Endogenous Sample Selection*

Torsten Figueiredo Walter[§] Niclas Moneke[¶]

August 26, 2024

Word count: 9,669

This paper examines enumerator incentives in the production of survey data, a crucial input to research and policymaking. In theory, survey data is generated from a randomly selected, representative sample of the population. We provide causal evidence that *in practice*, enumerators respond to variation in effort cost across survey subjects by excluding high-cost subjects. To this end, we exploit the random assignment of individual questionnaires across 3.4 million households in 181 Demographic and Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS), two prominent global household survey programs, as a source of exogenous variation in effort cost. We find that in 110 (39) of these surveys at least 5% (10%) of survey subjects eligible for individual questionnaires are missing from the sample. Missing individuals differ systematically from included individuals. As a result, survey samples are not representative of the population, causing bias in key aggregate statistics. In particular, we show that the fertility transition in Africa – where few alternative data sources on fertility exist – is likely to have been significantly faster than previously reported, leading to lower fertility levels today. Finally, we provide suggestive evidence that endogenous sample selection affects a wide range of surveys including living standards, labor force and firm surveys – thereby highlighting the broader relevance of the novel quantity-quality trade-off in data collection documented in this paper.

Keywords: Survey Methods, Enumerator Incentives, Sampling, Fertility *JEL classification:* C83, J13, J22

[§]New York University Abu Dhabi, Office A5-193, Abu Dhabi, UAE. Email: t.f.walter@nyu.edu ¶University of Oxford. Email: niclas.moneke@economics.ox.ac.uk

^{*}We thank Alison Andrew, Raj Chetty, Dennis Egger, Luis Garicano, Maitreesh Ghatak, Doug Gollin, Sydney Gourlay, Stephane Helleringer, Talip Kilic, Gabriel Kreindler, Chris Udry, Chris Woodruff and various seminar and conference audiences for helpful comments. Claudia Alcarra, Ana Barros, Frederic Cochinard, Muskaan Chopra, Ameni Hajji, Abigail Lamptey, Sophia Lin, Shifa Muhammad, Alfred Shauri, Jordan Simpson, Kristina Sisiakova, Kevishen Valeyatheepillay, Emma Wang and Ruike Zhang provided excellent research assistance. Financial support from STEG is gratefully acknowledged.

1 Introduction

Survey data is a crucial input to empirical research in the social sciences and policymaking. *In theory*, surveys generate data from randomly selected, representative samples, allowing for inference about population parameters. *In practice*, enumerator effort cost varies across survey subjects, leading to misalignment of enumerator incentives with sampling protocols. This begs two questions. First, does variation in enumerator effort cost lead to non-random sample selection? Second, does this selection give rise to bias in aggregate statistics?

This paper provides causal evidence from 181 surveys across 73 countries that variation in enumerator effort cost across survey subjects leads to endogenous sample selection. We show that: first, survey design shapes enumerator incentives by introducing ex ante observable variation in effort cost across survey subjects. Second, enumerators manipulate survey samples in response to these incentives by screening out high-cost subjects. Third, manipulation leads to non-random sample selection and systematic bias in aggregate statistics. Fourth, endogenous sample selection is a widespread phenomenon, observed across many countries and surveys.

This paper starts from the observation that surveys generate variation in enumerator effort cost across survey subjects by conditioning subjects' eligibility for specific (sets of) questions on their characteristics. The 2006 Multiple Indicator Cluster Survey in Togo provides an illustrative case. In this survey, women aged 15 to 49 and children under the age of 5 are eligible for long, individual questionnaires, whereas men are not. The top panels of Figure 1 show that the average number of questions to be asked about eligible household members is about three times as high as the question load associated with other household members. This difference in question load creates an incentive for enumerators to avoid eligible household members, either by omitting them entirely from household rosters or by manipulating their age or gender such that they cease to qualify for individual questionnaires. In fact, the bottom panels of Figure 1 show how the associated age distributions lack mass in all age ranges that are eligible for individual questionnaires (grey-shaded areas) and have excess mass on the ineligible side of eligibility thresholds. Reassuringly, the male age distribution shows the same missing mass below the age of 5 as the female age distribution (since children of any gender are eligible for the children's questionnaire), but does not display missing mass between 15 and 49 (gold-shaded area), thereby suggesting a causal link between question load and sample inclusion.

On the backdrop of the increasing use of surveys in Economics (Dutz et al., 2021) and other social sciences, understanding how variation in enumerator effort cost across survey subjects leads to endogenous selection of subjects out of survey samples is particularly important.¹ In this paper, we leverage data from two of the largest international household survey programs – the Demographic and Health Survey (DHS) and the Multiple Indicator Cluster Survey (MICS) – to document endogenous sample selection across a wide range of contexts, and to study its implications for aggregate statistics. The DHS and the MICS are heavily used in Economics (Young, 2012; Vogl, 2013; Michalopoulos & Papaioannou, 2016; Vogl, 2016; Jayachandran & Pande, 2017; Anderson, 2018; Chatterjee & Vogl, 2018; Hjort & Poulsen, 2019; Corno et al., 2020; Lowes & Montero, 2021) and other social sciences, with 3.3% of papers published in top social science journals between 2013 and 2017 referencing at least one of the two survey programs. At the same time, they are of great importance for policy as they contribute to the monitoring of the Sustainable Development Goals, influence aid allocation decisions, and inform the design of national policies in many low- and middle-income countries.

Our main empirical approach exploits the random assignment of individual questionnaires for men ("man's questionnaire") across households within 135 Demographic and Health Surveys and 46 Multiple Indicator Cluster Surveys to estimate the causal effect of enumerator effort cost on sample exclusion. In this context, enumerators typically work on temporary contracts for the duration of the survey and receive a fixed daily wage. One of the key performance indicators is the extent to which enumerators keep up with the assigned number of household interviews. Since re-employment between surveys of the implementing agency – usually the National Statistical Office – is common, enumerators face reputational concerns. This, above and beyond standard disutility of effort, creates an incentive to shorten household interviews by reducing the number of household members eligible for individual questionnaires. These individual questionnaires are particularly time-consuming with the average man's interview lasting 25 minutes. Indeed, we find that in 130 out of 181 surveys, the number of men eligible for the man's questionnaire is significantly smaller in households that have randomly been chosen to receive the man's questionnaire (henceforth referred

¹See appendix A.1.1 for details on the use of survey data in Economics, Political Science, Sociology and Demography over the last 20 years.

to as treatment households). In the median survey, a randomly drawn man's questionnaire leads to a reduction in eligible men included in the survey by 6.5%. In 25% of surveys, the reduction exceeds 9.3%.

We pursue a complementary approach to estimate the effect of the individual questionnaire for women ("woman's questionnaire"), which is key for deriving core survey outcomes such as fertility and child mortality. We cannot rely on random assignment of the woman's questionnaire for identification because this is extremely rare. As primary subjects of interest for the DHS and the MICS, women are almost always subject to long individual questionnaires. Instead, we adopt a difference-indifference approach that allows us to bound the number of missing women eligible due the woman's questionnaire through a comparison of the number of women recorded in the DHS and MICS relative to contemporaneous population censuses. To this end, we form 76 survey-census pairs across 38 countries and show that in population censuses, there is hardly any difference in the number of questions to be asked about women of eligible and ineligible age while this difference is large in the DHS and the MICS. We further show that the survey-census difference in ineligible women always weakly exceeds the difference in eligible women. Under the assumption that all excess women of ineligible age are due to age displacement of eligible women, the number of missing eligible women must be equal to half of this difference-in-differences, our lower bound. If, on the other hand, excess women of ineligible age are also due to more thorough household enumeration in the DHS and MICS, then the number of missing eligible women could be larger and would have to be partially explained by the omission of eligible women from household rosters. The results from this approach mirror the above findings for men. We estimate a lower bound of the reduction in eligible women of 6.1% in the median survey. In 25% of surveys, the lower bound exceeds 8.5%.

How do missing household members differ from included ones? By comparing eligible men in treatment and control households, we show that they are often younger, less closely related to the head of their household, less educated and less likely to have ever been married. A comparison of the characteristics of women of eligible age in the DHS/MICS and contemporaneous population censuses yields the same conclusion. This suggests that among the high-effort-cost household members – men and women of prime age who are eligible for individual questionnaires – enumerators screen out exactly the ones at the margins of their respective households, where household definitions leave room for discretion and the downside risk of roster manipulation is arguably limited.

How does the absence of marginal household members affect aggregate statistics? To outline the implications of endogenous sample selection at the aggregate level, we focus on one of the original core outcomes of the DHS and the MICS: fertility.² Notably, the DHS and the MICS remain a central data source on fertility that is commonly drawn upon in economic and demographic research (Vogl, 2016; Chatterjee & Vogl, 2018; Dupas et al., 2023). In the policy domain, they are an essential input to the formulation of national health as well as education policies, not least through their effect on population projections.³ We zoom in on Sub-Saharan Africa, a context that has received a lot of attention due to its high fertility levels and its slow fertility transition. Moreover, work on fertility in the region has been heavily reliant on the DHS and the MICS because few alternative data sources exist. This motivates us to revisit the above two facts. Comparing fertility levels and trends in the region between DHS/MICS and contemporaneous population censuses, we show that fertility estimates derived from the two survey programs are on average 9.3%higher than estimates based on census data. The attribution of this difference to endogenous sample selection in the DHS and the MICS is supported by several pieces of complementary evidence. First, it is consistent with the relative lack of young and unmarried women in DHS and MICS samples discussed above. Second, the fertility difference correlates strongly with our estimates of missing women. Third, an examination of male fertility exploiting the random assignment of the man's questionnaire paints a similar picture. Finally, we show that not only fertility levels, but also fertility trends differ significantly between the surveys and censuses. In fact, fertility in the region declines twice as fast in census as in DHS/MICS data over the 2000s, calling into question whether Africa's fertility transition is as uniquely slow as previously thought (Bongaarts & Casterline, 2013; Bongaarts, 2017).

Our findings highlight a novel quantity-quality trade-off in data collection. As the number of questions to be administered increases, samples shrink because enumerators either manipulate eligibility criteria or entirely omit survey subjects. This, in turn, induces selection and leads to bias in aggregate statistics. To quantify this trade-off,

 $^{^{2}}$ Note that the predecessor of the DHS in the 1970s and 1980s was the World *Fertility* Survey.

³See Ministère de la Santé et de l'Hygiène Publique (2021) and Government of the Republic of Malawi (2018) for examples of the use of DHS fertility estimates for public policy and planning.

we estimate the elasticity of sample size with respect to question load using both of our empirical strategies. We find an average elasticity of approximately -0.01, suggesting that adding an individual questionnaire that includes the same number of questions as the household roster to a survey leads to a reduction in eligible survey subjects by 1%. This elasticity tends to be larger (in absolute terms) in countryyears with lower levels of income, government effectiveness, statistical capacity and autocracy.

The history of the DHS and the MICS program illustrate the increasing importance of this trade-off. While individual questionnaires have become ever longer – in our sample the average number of questions included in the man's questionnaire doubled from 103 in the 1990s to 206 in the 2020s – elasticities have remained constant, and as a result, the share of missing individuals has increased. This is despite improvements in survey methods and technology over the same time period. In fact, we find that the use of tablets and field check tables is uncorrelated with elasticities across surveys. Only systematic audits, also referred to as mandatory re-interviewing, appear to limit sample manipulation.

The novel quantity-quality trade-off is likely to apply to a wide range of surveys because variation in enumerator effort cost across survey subjects is universal. To corroborate this, we provide graphic evidence of bunching at eligibility thresholds in selected living standards, labor force and firm surveys. We indeed find clear evidence of sample manipulation by enumerators in all these types of surveys, underlining the broader relevance of our findings.

This paper contributes to three streams of literature. First, it adds to a long and active literature on selection in surveys (Rubin, 1976; Meyer et al., 2015; Dutz et al., 2021). While this literature is largely focused on non-response bias, i.e., selfselection of respondents, this paper highlights a previously overlooked margin of selection, namely the screening of respondents by enumerators, and its implications for statistical inference in practice. We show that non-random sample selection due to enumerator incentives can lead to substantial bias in aggregate statistics, and blur our view of the world.

Second, this paper contributes to a broad literature on survey measurement which has shifted its focus from question design (Bardasi et al., 2011; Beaman & Dillon, 2012; Dillon et al., 2012; Serneels et al., 2017) to respondent effects (Kilic et al., 2021; Dervisevic & Goldstein, 2023; Dillon & Mensah, 2024; Masselus & Fiala, 2024) and respondent incentives (Ambler et al., 2021; Abay et al., 2022; Jeong et al., 2023) in recent years. Enumerator incentives, however, have received little consideration since the pioneering work by Crespi (1945, 1946) and Durant (1946).⁴ This paper demonstrates how survey design and implementation protocols shape enumerator incentives and thereby affect the selection of surveys subjects into survey samples.⁵

Third, we add to the literature on fertility dynamics, in particular in Sub-Saharan Africa (Bongaarts & Casterline, 2013; Bongaarts, 2017). We show that the key data source on fertility in the region is heavily upward biased as a result of endogenous sample selection, calling into question the high fertility levels and the uniquely slow fertility transition in Africa.

The remainder of the paper is structured as follows. In Section 2, background information on the relevance, design and implementation of the DHS and the MICS is provided. In Section 3, the empirical strategies employed to estimate the extent to which men and women who are eligible for individual questionnaires are missing from survey samples are presented, followed by the corresponding results. In Section 4, the selection of missing household members on observables is examined and in Section 5, the implications of endogenous sample selection with regards to Africa's fertility transition are investigated. Finally, Section 6 emphasizes the broad relevance of endogenous sample selection in surveys across instruments and settings, and Section 7 concludes.

2 The Demographic and Health Survey (DHS) and the Multiple Indicator Cluster Survey (MICS)

2.1 Relevance

In this paper, we study endogenous sample selection in two large international household survey programs, the Demographic and Health Survey (DHS) and the Multiple Indicator Cluster Survey (MICS). The DHS focuses on fertility, family planning, maternal and child health, gender, HIV/AIDS, malaria, and nutrition. It is funded by

 $^{^{4}}$ A notable exception is Finn and Ranchhod (2015) who document the quantitative implications of data fabrication in a large South African household survey for statistical inference.

 $^{{}^{5}}$ In contrast to recent work on respondent fatigue (Ambler et al., 2021; Abay et al., 2022; Jeong et al., 2023), we focus on the effect of question load on enumerator behavior rather than respondent behavior.

USAID and implemented by ICF. The MICS focuses on the situation of children and women and is supported by UNICEF. The former program started in 1984 while the latter began in the 1990s. Both programs have a reputation for collecting accurate, comparable, nationally representative data using standardized, state-of-the-art survey instruments across countries.

We focus on these household survey programs for three reasons. First, they are of great importance for research. The DHS and the MICS are commonly used data sources in empirical social science research. A full-text search of top social science journals reveals references to the DHS and/or MICS in 3.3% of *all* top papers published between 2013 and 2017. In Economics, 1.3% of top papers refer to at least one of the two survey programs over this time horizon, in Demography 15.4%, in Sociology 0.9% and in Political Science 0.3%.⁶ Additionally, the two surveys are also frequently cited in medical and general science outlets.

Second, the DHS and the MICS are of great importance for policy. They are key to monitoring the Sustainable Development Goals (SDGs), providing input data for about 30 SDG indicators. They affect aid flows, not least through programs that are explicitly conditioned on DHS-derived indicators, such as the World Bank Programfor-Results. At the national level, they are an important input to policy, in particular in health sector, as evidenced by frequent references to them in national health policy plans (Ministry of Health, Republic of Ghana, 2020; Ministry of Health, Republic of Kenya, 2022; Government of the Republic of Malawi, 2018; Ministry of Health, Uganda, 2017).

Third, both survey programs are of *global* importance. Since program inception, more than 400 DHS and 350 MICS have been conducted across more than 120 countries, making them a unique source of globally comparable data over a time span of more than 30 years.⁷

2.2 Survey design

USAID/ICF and UNICEF provide questionnaire templates to local agencies at the beginning of each survey wave. The DHS originally consisted of two questionnaires: a household questionnaire (including household roster) and a woman's questionnaire.

⁶See Appendix A.1.2 for details.

⁷Figures retrieved from the official DHS – https://dhsprogram.com/ – and MICS website – https://mics.unicef.org/ – on August 18, 2024.

The MICS was originally composed of three questionnaires: a household questionnaire (including household roster), a woman's questionnaire and an under-five questionnaire. In both survey programs, the household questionnaire is composed of two parts, the household roster and household-level questions. The household roster gathers basic demographic information on all household members and is used to determine the eligibility of household members for individual questionnaires based on gender and age. Household-level questions concern topics such as asset ownership, energy use and sanitation. The woman's questionnaire is administered to all women aged 15 to 49 and focuses on fertility and maternal health. The under-five questionnaire is administered to all children under the age of 5 and focuses on child health and development.

In later survey phases, both survey programs introduced a man's questionnaire. This questionnaire addresses similar topics as the woman's questionnaire – mainly fertility, health and sexual behavior – but is typically much shorter. In most surveys, the eligible age ranges from 15 to 49, but in some cases it also includes older men up to the age of 54, 59 or 64. Importantly, in many surveys this questionnaire is only administered in a random subset of households within each enumeration area.

Individual questionnaires are administered after the household roster has been completed. This implies that at the time of the roster completion, survey respondents do not know how the age and gender of household members recorded in the roster affect the length of the household interview. Enumerators are very much aware of this, however, since they are familiar with the survey structure from their training and their experience with previous households. Moreover, the survey instruments make the eligibility of household members for individual questionnaires very salient, asking enumerators to mark every eligible member as they fill in the roster (see Figure A2 for illustration).

An important difference between the DHS and the MICS lies in the household definition they work with. The MICS operates with a de jure household definition, recording all usual members. Each of these members qualifies for the individual questionnaire if they are in the eligible age range. The DHS instead records all usual household members *and* all guests who stayed in the household the night before. However, only de facto members – all those who slept in the household the night before – qualify for the individual questionnaire if they are in the eligible age range.

2.3 Enumerator incentives

DHS and MICS are funded and supported by USAID and UNICEF, respectively. Both programs provide questionnaire templates that are standardized within survey phases and guidelines for implementation in the form of manuals for enumerators, supervisors, editors as well as enumerator training, household sampling and other topics. However, surveys are ultimately implemented by local agencies, most commonly National Statistical Offices.⁸ Hence, enumerators are recruited locally. Nonetheless, hiring practices barely vary across contexts. Temporary contracts for the duration of the survey are standard. Only a few implementing agencies rely on their permanent staff for enumeration in addition to temporary workers.⁹ Enumerators generally have to meet the following criteria: They have to (i) be available to work full time for the duration of the survey, (ii) exceed a minimum level of physical fitness, so they can walk long distances, and (iii) speak at least one of the languages used for training. Additionally, there is a preference for local candidates from within a region of a country and candidates with secondary or higher education. As a result, interviewers are more educated than the average respondent in most contexts.

Data are collected by enumeration teams usually comprised of a supervisor, a field editor and several enumerators. Supervisors are in charge of the organization of the fieldwork, including the assignment of households and questionnaires to enumerators and spot check re-interviews. Field editors are responsible for monitoring data quality. To this end, they observe interviews, edit completed questionnaires and may ask enumerators to return to interviewed households to correct problems. Additional data quality issues can be detected through field check tables produced by data processing teams during fieldwork. These are typically provided to supervisors after the completion of an enumeration area and can inform measures to improve data quality going forward. All of this implies that the missing eligible individuals we detect in this paper were either not flagged in any of the data quality checks or, if flagged, they were not addressed successfully.¹⁰

 $^{^{8}82\%}$ of the surveys in our main sample were implemented by National Statistical Offices, 15% by other governmental bodies, such as Ministries of Health, and 3% by nongovernmental organizations.

⁹Fieldworker data from recent DHS confirm that most enumerators work under temporary contracts. In the 19 surveys included in our main sample for which fieldworker data is available, on average 13% of enumerators are permanent employees and 87% have temporary contracts.

¹⁰Neither in the DHS nor the MICS data is it possible to observe which interviews were monitored by a field editor or reconducted by a supervisor.

Enumerators' employment contracts are designed by the implementing agencies. Thus, they can vary across surveys. In practice, however, enumerators are almost always paid a fixed daily wage plus a per diem for food and accommodation. The daily workload of enumeration teams is typically set in advance by the central office of the implementing agency and adherence to the schedule is heavily emphasized during fieldwork. Supervisors are responsible for assigning households to enumerators at the beginning of each day, but these assignments can be adjusted throughout the day as some interviews take shorter or longer than expected. Enumerator performance is monitored continuously throughout the survey. Supervisors complete a so-called "interviewer progress sheet" after the completion of each survey cluster to track how enumerators are keeping up with the assigned workloads.¹¹ This means that enumerators benefit from missing eligible household members in at least two ways. First, they will be better able to keep up with the assigned workloads, thereby building a good reputation, minimizing their risk of termination, and increasing their chances of re-employment.¹² Second, they may have shorter working days.

The incorrect completion of household rosters also carries a risk for enumerators. Supervisor guidelines indicate that terminations may be necessary in cases of data falsification. It is unclear how common such terminations are in practice, but the DHS recommends implementing agencies to recruit reserve enumerators who can step in after separations.¹³

3 Missing household members

3.1 Missing men

3.1.1 Empirical strategy

Relying on the random assignment of the man's questionnaire across households, we run the following OLS regression to estimate the causal effect of the man's questionnaire:

$$Y_{ic} = \alpha_c + \beta M Q_{ic} + \epsilon_{ic} \tag{1}$$

¹¹See LoPalo (2023) Online Appendix Figure 1 for the DHS "interviewer progress sheet".

¹²DHS fieldworker data shows that many enumerators have previous experience with the DHS and other surveys.

 $^{^{13}}$ This section is based on conversations with the UNICEF Data Collection Unit and LoPalo (2023).

where Y_{ic} is an outcome of interest of household *i* in stratum *c*, MQ_{ic} is an indicator for the man's questionnaire being administered and α_c is a set of stratum fixed effects. In most surveys, strata correspond to enumeration areas. In a few MICS, the random assignment of the man's questionnaire is additionally stratified by the presence of children below the age of 5, as recorded during the household listing exercise preceding the survey. The regression coefficient β captures the causal effect of the administration of the man's questionnaire on the outcome of interest.

3.1.2 Data

Based on the universe of survey reports published on the official DHS and MICS websites, we identify 181 surveys, 135 DHS and 46 MICS, carried out across 73 countries between 1991 and 2022 in which a man's questionnaire was administered to a random subset of households. Table A1 provides a complete list of these and Figure 2 illustrates their geographic coverage, including low- and middle-income countries from all continents. The resulting dataset includes 3.4 million households out of which 1.1 million were randomly assigned a man's questionnaire.¹⁴

The random assignment of the man's questionnaire to households is stratified by enumeration area. The treatment probability varies between 1/12 and 2/3 across surveys, but it is most frequently 1/2 (in 55% of surveys) or 1/3 (in 34% of surveys). The median duration of the man's questionnaire varies between 6 and 50 minutes across surveys, with the average man's questionnaire lasting 25 minutes.

In a subset of surveys (76), men and/or women in treatment households who are eligible for the individual questionnaire as well as children under the age of 5 are also eligible for biomarker collection. This typically amounts to a combination of HIV testing among eligible adults, anaemia testing among eligible women and children, and malaria testing and anthropometry among children. Men's biomarkers are collected in 58 of these surveys. In all of these cases, we estimate the joint impact of the man's questionnaire and biomarker collection.

Microdata for the identified surveys is obtained from the DHS (ICF, 1982-2022) and MICS (UNICEF, 2000-2022) online microdata archives. All variables required for the analysis are harmonized across datasets, as detailed in Appendix Section A.2.4.

¹⁴We identify additional surveys with a man's questionnaire that is randomly assigned across households. We do not include these here because either their design differs in important ways from the one described in Section 2.2 or the available microdata does not lend itself to our analysis. Details are provided in Appendix A.2.1. We also exclude surveys that do not have national coverage.

3.1.3 Results

We find that the assignment of the man's questionnaire leads to the recording of a significantly lower number of eligible men in most surveys. Figure 3 plots the point estimates and 95% confidence intervals of the β coefficient from specification (1) relative to the control mean, sorted by magnitude across surveys. We estimate a statistically significantly negative impact in 130 out of 181 surveys (72%). For the remaining 51 surveys, our point estimates are mostly negative, but insignificant (36 surveys). Only for a single survey, we estimate a statistically significant positive effect. The median reduction in eligible men amounts to 6.5%. In 25% of surveys the reduction exceeds 9.3%, peaking at 23%.¹⁵

It is worth noting that the administration of the man's questionnaire goes hand in hand with a change in enumerators. The emphasis of same-sex interviews in the DHS and the MICS program means that a male interviewer is required for households that are eligible for the man's questionnaire while this is not the case for ineligible households. As a result, household questionnaires in treatment households are more likely to be administered by male enumerators (see Figure A4a). However, consistent with the idea of moral hazard, selection of enumerators cannot explain the reductions in the number of eligible men as point estimates are barely affected by the inclusion of enumerator fixed effects (see Figure A5).¹⁶

By comparing the number of missing eligible men we detect to the number of additional *ineligible* men recorded, we decompose the loss of eligible members into two components: (i) age displacement - where enumerators manipulate respondents age to render them ineligible for individual questionnaires - and (ii) omission from household rosters - where enumerators do not record eligible men at all.¹⁷ For the purpose of this decomposition exercise, we disregard household members aged 9 and younger. This is because in some of the surveys in our sample, the difference in the number of children in this age group between treatment and control households may be influenced by differences in the collection of biomarkers from children under the

 $^{^{15}}$ Note that effects are larger in surveys where male biomarkers are collected alongside the questionnaire (see Figure A3).

¹⁶See Appendix A.3 for more details on the effect of the man's questionnaire on enumerator characteristics. In the same section, we also examine effects on respondent characteristics and differential effects between urban and rural areas.

¹⁷In the case of the DHS, there is an additional margin along which enumerators can disqualify eligible men from the man's questionnaire, namely by declaring that they did not sleep in the household last night. Here, we capture this displacement margin jointly with age displacement.

age of 5.

We find evidence of excess ineligible men in treatment households in many surveys. Our point estimates are significantly positive for 56 surveys, significantly negative for 6 surveys and statistically insignificant in the remaining 119 surveys (see Figure 4). Reassuringly, the total number of men in households is weakly negatively affected in all surveys (see Figure A6).

Dividing the absolute value of the absolute reduction in eligible men by the absolute increase in ineligible men, we can determine the share of missing eligible men whose age is displaced. We find that there is a lot of variation across surveys in the share of men with a displaced age. In fact, in some surveys, the loss of eligible men is completely explained by age displacement while in other surveys it is entirely driven by the omission of these men from household rosters (see Figure A7).

3.2 Missing women

3.2.1 Empirical strategy

In the DHS and the MICS, women's responses to the woman's questionnaire are of central interest because they are informative about the main focus area of the two survey programs, namely the situation of women and children. Eligible women face substantially longer individual questionnaires than eligible men. In our sample of surveys, the median duration of the woman's questionnaire exceeds the median duration of the man's questionnaire in every single survey. On average, the woman's questionnaire is 16 minutes (64%) longer than the man's questionnaire. In conjunction with the results presented in the previous section, this raises serious concerns about endogenous selection of eligible women.

To assess the amount of missing women of eligible age, we cannot rely on the same identification strategy as for men because in both the DHS and the MICS, the woman's questionnaire is always administered in all households, not just a random subset of households. We identify three (partial) exceptions to this rule, however. In the Ghanaian 2008 DHS, the woman's questionnaire was only administered in a random subset of households. Additionally, in the 2013 DHS in Namibia and the 2019 DHS in Gabon, a short version of the woman's questionnaire was administered to women aged 50 to 64 in a random subset of households (in addition a standard woman's questionnaire for women aged 15-49 in all households). We leverage the

random assignment in these three surveys to test if our results for men also hold among women.

We complement this approach with a comparison of the number of female household members of eligible and ineligible age in DHS/MICS and contemporaneous population censuses. This is motivated by the fact that in the DHS and the MICS the number of questions to be administered to women of eligible age (typically aged between 15 and 49) is much larger than the number of questions to be administered to women outside this age range, but no such difference in question load between women of eligible and ineligible age exists in population censuses. This means that enumerators have a strong incentive to omit women of eligible age or to manipulate their age such that they appear to be ineligible in the DHS and the MICS, but they have no such incentive in censuses. Hence, we can compare the average number of women of eligible and ineligible age in the household in the DHS/MICS and the census to test if survey samples contain fewer women of eligible age and (weakly) more of ineligible age.

Differences in survey design and implementation between DHS/MICS and censuses can lead to level shifts in the number of recorded household members, independent of age- and gender-specific enumerator incentives embodied in questionnaires. We accommodate this by constructing bounds of the number of missing eligible women from the difference-in-differences between women of eligible and ineligible age in the DHS/MICS and the census. First, assuming that missing women of eligible age are entirely due to omission from household rosters, we set the upper bound of missing women to the above-mentioned difference-in-differences. Second, assuming that missing women of eligible age are entirely due to age displacement, we set the lower bound to one half of the above-mentioned difference-in-differences.

We use the following regression specification to estimate the difference-in-differences of interest:

$$Y_{is} = \beta_0 + \beta_1 SVY_i + \beta_2 Eligible_s + \beta_3 (SVY_i \times Eligible_s) + \mu_{is}$$
(2)

where Y_{is} is the number of women of eligibility status $s \in \{eligible, ineligible\}$ recorded in household *i*. Women are considered eligible if they are in the age range that is eligible for the DHS/MICS woman's questionnaire (usually 15 to 49). They are considered ineligible if they are outside this age range and older than 9 years of age. The lower bound of 9 limits the conflation of the impact of the woman's questionnaire with the impact of the high question load for children under 5 in the DHS/MICS on the presence of ineligible women.¹⁸ SVY_i is an indicator that takes the value one if the household roster was recorded by the DHS/MICS and zero if it was recorded by the census. *Eligible_s* is an indicator that takes value one if the outcome is the number of eligible household members, and zero if it is the number of ineligible household members. We scale survey sampling weights such that the total number of households in surveys and contemporaneous censuses is identical, and cluster standard errors at the household level. β_3 captures the difference-in-differences of interest. Accordingly, the upper bound of missing women is equal to β_3 and the lower bound is equal to $\beta_3/2$.

3.2.2 Data

We form survey-census pairs by matching all DHS and MICS with population censuses conducted within two years of the survey. Since the MICS only records de jure household members, we ensure that censuses matched with MICS record all de jure members. For the DHS, on the contrary, we restrict matches to censuses that record all de facto household members because in the DHS only de facto members are eligible for individual questionnaires. For 76 of the resulting census-survey pairs, we obtain microdata from IPUMS-International (Ruggles et al., 2024) or directly from national statistical offices.¹⁹ See Table A2 for a complete list of the pairs and data sources. They cover 38 countries across Africa, Asia and Latin America, as shown in Figure 5.²⁰

To ensure comparability between census and survey data, we exclude collective dwellings from census data. We confirm that the relative question load of eligible to ineligible women is close to one in all censuses, but much larger in the matched DHS and MICS. As shown in Figure A8, the relative question load varies between 1.0 and 1.5 across the matched censuses while it varies between 1.1 to 29.3 across the matched surveys.

¹⁸This assumes that the high question load for children under 5 may lead to the displacement of their age to values above 5, but rarely above 9.

¹⁹The authors wish to acknowledge all the statistical offices that provided the underlying data making this research possible. See Table A2 for a complete list of these.

²⁰We exclude seven DHS-census pairs where eligibility for the DHS woman's questionnaire is conditional on having ever been married.

3.2.3 Results

Exploiting the random assignment of the woman's questionnaire to households in three DHS, we find a sizeable effect of the woman's questionnaire on the presence of eligible women in households in 2 out of 3 surveys - in line with our results for men presented in the previous section. Moreover, the effects of the woman's and the man's questionnaire are of the same order of magnitude within the same survey, as shown in Figure 6.

Comparing the number of eligible and ineligible women in the household in the DHS/MICS and contemporaneous population censuses paints a similar picture. Figure 7 illustrates that households in the DHS/MICS almost always contain fewer women of eligible age and more of ineligible age. In some cases, they contain more or less of both eligible and ineligible women. As argued in the previous section, this may be explained by level shifts due to differences in the definition of households or the implementation of household rosters between the DHS/MICS and the census. Importantly, the difference in ineligible women between census and DHS/MICS is always at least weakly greater than the difference in eligible women. Thus, in relative terms, the DHS/MICS are under-recording eligible women throughout.

Figure A9 displays the bounds for missing women derived following the approach detailed in Section 3.2.1. We estimate a statistically significantly negative lower bound in 68 out of 76 surveys, ranging between 2% and 16%. In 11 of surveys the lower bound exceeds 10%. The estimated upper bound is substantially larger (in absolute terms) and surpasses 10% in 46 of the surveys. This suggests that a substantial number of eligible women is screened out by DHS/MICS enumerators and never administered the woman's questionnaire.

To assess the bounds we construct for women, we turn to a subsample of DHS/MICS for which we have both a randomized man's questionnaire and a matched population census. This allows us to compare bounds of missing men for households with a man's questionnaire based on a survey-census comparison with our experimental estimates of the effect of the man's questionnaire. We find that the two approaches yield remarkably similar results (see Figure A10). In 24 out of 33 surveys, the confidence interval of the experimental estimate overlaps with the range of estimates delimited by the bounds. In the remaining cases, the experimental estimate falls short of the lower bound. One potential explanation for this is a violation of the SUTVA assumption, where the assignment of the man's questionnaire does not only lead to missing eligible

men in treatment households, but also in control households. This could happen if enumerators do not always pay close attention to the treatment status of households at the outset of the household interview or the expected penalty for omission and/or age displacement is so small that even in the control group these behaviors pay off.

3.3 The elasticity of sample size with respect to question load

We compute the elasticity of sample size with respect to question load to facilitate comparison across surveys and gender. We define this elasticity as the relative reduction in the number of eligible household members over the relative increase in question load for eligible household members. We measure the question load by the total number of questions listed in the questionnaires that a household member is eligible for (household roster, man's questionnaire, woman's questionnaire).²¹ We find that the elasticity for men estimated from the random assignment of the man's questionnaire is on average -0.010, with variation across surveys between -0.001 at the 10th percentile and -0.021 at the 90th percentile (see Figure A11). The elasticity for women estimated from the survey-census comparison ranges between -0.002 at the 10th percentile and -0.027 at the 90th percentile, with an average of -0.008 (see Figure A12). In surveys where we can estimate both of these elasticities (33), they are typically quantitatively similar and rarely statistically significantly different from each other (see Figure A13).

4 Selection

4.1 Selection of men

Who are the household members of eligible age that are screened out of individual questionnaires by enumerators? Answering this question is challenging because the missing household members are not directly observable, neither are their characteristics. But the comparison of recorded men of eligible age in households with and without man's questionnaire is informative about the characteristics of the missing men. Differences in average characteristics between these two groups reflect selection of men out of sample.

²¹See Appendix A.2.3 for details on the counting of questions listed in questionnaires.

Running specification (1) on individual-level characteristics recorded in the household roster (and thus observable for all men, independent of their household's eligibility for the man's questionnaire), we find that missing men differ systematically from included men. In most surveys, men of eligible age recorded in households eligible for the man's questionnaire are older, more educated and more closely related to the household head and more likely to have ever been married (see Figure 8).²² This implies that missing men tend to be younger, less educated, less closely related to the head of their household, and less likely to have ever been married. In other words, enumerators appear to be screening out eligible men that are at the margin of their respective households. These are precisely the household members where enumerators have discretion because household definitions are sufficiently vague, with rosters typically instructing enumerators to list all "usual members" (plus visitors that slept in the household last night in the case of the DHS). Moreover, omission or age manipulation are plausibly less likely to cause opposition from respondents or supervisors in these cases - all of whom also have an incentive to keep surveys short.

While we find that missing men are on average younger than included men, this masks an interesting non-linearity. In fact, eligible men that are within 10 years of age from the lower and upper eligibility cutoff (in most surveys 15-24 and 40-49 years old) are about twice as likely to be screened out of the sample for the man's questionnaire than eligible men who are further in age from these cutoffs (typically 25-39 years old), as shown in Figure A14. At the same time, it is remarkable that even in the intermediate age range, far from the cutoffs, more than 5% of men are missing in some surveys (14).

Selection on observables is stronger in surveys with more missing men. As Figure A15 illustrates, differences in the four observed characteristics tend to be larger in surveys with more missing eligible men.

4.2 Selection of women

We test for selection of women along the same dimensions as for men in the previous section. To this end, we harmonize information on age, the relationship to the house-hold head, years of schooling and marital status between DHS/MICS and censuses as detailed in Section A.2.4. Comparing average characteristics between the surveys and the matched censuses, we find a remarkably similar selection pattern for women

 $^{^{22}}$ All estimates are reported in Table A7.

as documented for men in the previous section, albeit somewhat stronger. In most DHS/MICS, eligible women are older, more closely related to the household head, more educated and more likely to have ever been married than in the census.

The strength of the selection is positively correlated with the estimated amount of missing women along all examined dimensions apart from years of schooling. Once again, this pattern is reassuringly similar to the one observed for men, where the correlation is also weakest for years of schooling (compare Figures A15 and A16).

5 Aggregate implications

5.1 Revisiting Africa's fertility transition

How does the selective screening out of household members documented in the previous section affect aggregate statistics? The selection on observables documented in the previous section implies that endogenous sample selection does not only lead to a decline in precision of estimates as a result of sample size reductions. It also leads to bias in aggregate statistics. How important is this bias? In this section, we address this question focusing one key survey outcome – fertility.

The DHS and the MICS are a key data source on fertility in low- and middleincome countries. The large number of top demography papers citing the DHS and the MICS is evidence of this. Between 2013 and 2017, 15.4% of all papers published in the two top journals *Demography* and *Population and Development Review* cited the DHS or the MICS.²³ Work on fertility in the field of Economics also heavily relies on the two household survey programs (Vogl, 2016; Chatterjee & Vogl, 2018; Rossi, 2018; Dupas et al., 2023; Zipfel, 2024). Additionally, fertility data from the two programs is a key input for national health, family planning and education programs, not least due to its significance for population projections.

The DHS and MICS are of particular importance for the measurement of fertility Sub-Saharan Africa because alternative data sources, such as vital registration systems, are rarely reliable. At the same time, Sub-Saharan Africa is widely known for its high fertility levels and its seemingly slow fertility transition (Bongaarts & Casterline, 2013; Bongaarts, 2017). We revisit both of these facts in the light of the endogenous sample selection documented above. In particular, the selection of never

 $^{^{23}\}mathrm{See}$ Appendix A.1.2 for details.

married women out of sample documented in the previous section raises the concern that fertility is overestimated in the two survey programs.

We focus on the total number of live births as our measure of fertility because this information is most consistently gathered in the two survey programs as well as population censuses. In Sub-Saharan Africa, we observe the total number of children ever born to eligible women in 41 out of 48 survey-census pairs, i.e., in both the survey (from the woman's questionnaire) and the matched population census.²⁴ Comparing the number of reported live births within pairs, we find evidence of significantly higher fertility in DHS/MICS than in contemporaneous censuses. Figure 10 shows that the average number of children ever born in the surveys exceeds the one in the census in 36 out of 41 cases. In 23 of these cases, the gap is larger than 5%, and in 15 of them larger than 10%. Only in two cases, we detect a statistically significantly lower reported fertility in DHS/MICS than in the census.²⁵ Reassuringly, these are surveys where we only find limited evidence of missing women. In fact, the degree of overestimation in surveys is strongly negatively correlated with our estimates of missing women (see Figure A17).

Complementary evidence from the random assignment of the man's questionnaire corroborates the overestimation of fertility in the DHS and the MICS due to endogenous sample selection. In the absence of information on the fertility of men in households without a man's questionnaire, we show that the number of biological children men live with in their household, is larger in treatment households in the majority of surveys.²⁶ As Figure A18 shows, the point estimate is positive for 93 out of 117 surveys, and statistically significantly so in 42. On average, fertility is overestimated by 4% and in 24 surveys, overestimation exceeds 10%.

If the extent to which fertility is overestimated in the DHS changes over time, then fertility trends will also be biased. To assess this, we follow Bongaarts and Casterline (2013) who use DHS data to document a slower fertility decline in Sub-Saharan

 $^{^{24}}$ Details on the harmonization of this information between surveys and censuses are provided in Section A.2.4.

 $^{^{25}}$ All estimates are reported in Table A8, column 6.

²⁶Since the fertility of men is only elicited in the man's questionnaire, we do not observe fertility of men in control households. We overcome this limitation by constructing a proxy of fertility of men in both treatment and control households from the parent survival module in the household roster. This module is included in 168 out of the 181 surveys in our sample and links children aged 17 and younger to their biological parents as long as these are alive and live in the same household. Thus, we can compute the number of biological children each eligible man lives with. To obtain nationally representative figures, we weight households using their sampling weights.

Africa in the 2000s relative to what UN data shows for Latin America and Asia in the 1970s. For 11 Sub-Saharan African countries, we match DHS and population censuses conducted within 3 years of each other pre 2000 and post 2010.²⁷ This enables us to compare the average annual decline in the total number of live births of women aged 15-49. As shown in Figure 11, we find a much faster fertility decline in Sub-Saharan Africa in census relative to DHS data. In fact, we estimate that fertility declined twice as fast in population census data as in DHS data (see Table A9), calling into question whether the fertility decline in Sub-Saharan Africa has indeed been exceptionally slow compared to other regions in the world.

5.2 Quantity-quality trade-off in data collection

The presented evidence highlights a quantity-quality trade-off in data collection. Sample size falls as question load increases. Marginal household members drop out, leading to non-random samples and biased aggregate statistics. Awareness of this "cost of asking more" is important, especially as surveys grow ever longer. The history of the DHS and the MICS program illustrates this. The length of individual questionnaires in the DHS and the MICS has increased steeply over time. As Table I shows, the average length of the man's questionnaire in our sample has nearly doubled since the 1990s, increasing from 103 to 205 questions (columns 1 and 2). At the same time, the elasticity of sample size with respect to question load has, if anything, fallen further (columns 3 and 4), leading to more missing men over time (columns 5 and 6).

How can the quantity-quality trade-off be mediated? To address this question, we manually code up details on survey implementation and fieldwork from the official reports accompanying all 181 surveys in our main sample. We focus on three survey features that are systematically documented: the use of (i) mandatory re-interviewing, (ii) field check tables and (iii) tablets.²⁸ We correlate these features with the estimated elasticities of sampled men. Results are reported in Table II. We find that mandatory re-interviewing of a fixed fraction of households in each enumeration area is strongly positively correlated with the elasticity, suggesting that this form of auditing reduces manipulation of household rosters by enumerators. The use of field check tables, on

 $^{^{27}}$ We expand the time window for matching to up to three years for this exercise to ensure a sufficiently large sample. Also note that we impose that censuses do not change from *de jure* to *de facto* or vice versa within country over time. The 11 included countries are BEN, BFA, GHA, KEN, MOZ, MWI, SEN, TZA, UGA, ZAF and ZMB.

²⁸See Appendix A.2.5 for details.

the other hand, is not correlated with the elasticity, and the use of tablets is *negatively* correlated with it (after controlling for mandatory re-interviewing), indicating that these features are unlikely to mediate the trade-off.

6 External validity

6.1 Endogenous sample selection across countries

In which types of settings is endogenous sample selection more prevalent? To address this question, we correlate our estimates of the elasticity of sampled men with respect question load with country characteristics. Table III reveals that this elasticity is more negative in countries that are poorer (column 1). The median elasticity is -0.009 in the poorest 25% of country-years in our sample while it is only -0.007 in the richest 25%. Conditional on GDP per capita, the elasticity is smaller in absolute terms in country-years with higher government effectiveness (column 2), higher statistical capacity (column 3) and less democratic regimes (column 4).²⁹ Among these, the strong and robust correlation with government effectiveness stands out, suggesting that the shirking behavior of enumerators of the National Statistical Office and other governmental bodies is reflective of ineffective governance more broadly.³⁰

6.2 Endogenous sample selection beyond DHS and MICS

Misalignment of sampling incentives of enumerators with sampling protocols arises if (i) there is significant variation in enumerator effort cost across survey subjects, (ii) enumerators can differentiate between high- and low-cost survey subjects exante and (iii) enumerator behavior is not perfectly observable. We posit that these conditions are met by a broad range of surveys, making endogenous sample selection a widespread phenomenon. Below, we provide three illustrative examples.

6.2.1 Living standards surveys

Living standards and household budget surveys are the basis for poverty measurement in low- and middle-income countries. National poverty headcounts typically measure the number of individuals living in households with consumption per adult

 $^{^{29}}$ Details on all the independent variables are provided in appendix A.2.6.

³⁰Only 3% of the surveys in our sample are implemented by non-governmental organizations.

equivalent below the national poverty line. While adult equivalence scales vary across countries, they all put less weight on younger individuals. Manipulation of age information or the omission of household members of specific age groups in response to survey incentives have thus the potential to affect poverty estimates. In practice, the design of poverty measurement surveys varies substantially across countries. A comparison of the Tanzanian Household Budget Survey and the Zambian Living Conditions Monitoring Survey demonstrates this. While the former includes an extensive module on labor and time use for individuals above the age of 4, making individuals aged 5 and older particularly costly for enumerators, the latter requires enumerators to collect more information about children aged 4 and below through a child module including anthropometric measurements (see Figures 12a and 12b). As a result, the age distribution from the Tanzanian survey shows excess mass on the left side of the age threshold of 5 and missing mass to the right of it, and the opposite is true for the Zambian survey (see Figures 12c and 12d). It is unclear in which direction and by how much these distortions bias poverty estimates. This is because it is not known (i) to which extent the observed bunching pattern is driven by age displacement or the outright omission of children, and (ii) if these behaviors are more common in poorer or richer households. We leave these questions for future research.

6.2.2 Labor force surveys

Labor force surveys collect information on the employment of individuals above a certain age threshold – typically 5 or 15. This implies an incentive for enumerators to omit individuals above the threshold or to manipulate their age such that it falls below the threshold. The case of the Zambian labor force survey is illustrative. Between the 2017 and the 2019 survey, the eligibility threshold for labor modules was moved down from the age of 15 to the age of 5. Figure A20 shows how bunching of individuals below the threshold of 15 disappeared in response to this change while bunching below the new threshold of 5 emerged. Such age manipulation is likely to be particularly relevant for statistics on child labor and youth employment.

6.2.3 Firm censuses

In firm censuses, the amount of information collected about firms often varies with firm size. This creates incentives for enumerators to manipulate firm size or omit

firms that require additional data collection entirely in order to lower effort costs. The Indian Economic Census is a case in hand. It aims to record all formal and informal non-farm businesses in the country. To this end, enumerators visit all buildings in the entire country, recording the firms found therein and their basic characteristics, including the total number of employees. Thereafter, additional information is collected for firms above a given size threshold. In the 2005 Economic Census, an address slip (see Figure A21) had to be completed for all firms employing 10 or more workers (Ministry of Statistics and Programme Implementation, India, 2005). In 2013, for each identified firm with 8 or more workers, a form referred to as "Schedule 6C" had to be completed (see Figure A22). This included the name of the establishment, its address, a description of its major activity and its source of registration (Ministry of Statistics and Programme Implementation, India, 2005). Figure 13 illustrates bunching of firms below the respective eligibility thresholds of 10 and 8 in 2005 and 2013. The simultaneous absence of bunching below the firm size threshold from the respective other census year strongly suggests that enumerators manipulate firm size such that firms fall below the eligibility threshold. As a result, the recorded firm size distributions are distorted, with implications for research on the determinants of firm size, such as Amirapu and Gechter (2020).

7 Conclusion

Descriptive statistical analysis and causal inference lie at the heart of empirical research in social science. While causal inference was revolutionized by the introduction of experimental methods in the early 2000s and identification has been the subject of much methodological research since, data-generating processes have received considerably less attention. However, good data is paramount for both causal inference and descriptive analysis (Dillon et al., 2020).

This paper examines the production of survey data, arguably one of the most important data sources in the social sciences. We show that enumerators systematically screen out survey subjects that require disproportionate effort based on ex ante-observable characteristics (age and gender in our case), either by omitting such subjects entirely or by manipulating their eligibility criteria. This enumerator behavior induces selection of survey subjects out of sample and, as a result, biases aggregate statistics.

Leveraging two complementary empirical strategies, one exploiting random assignment of individual questionnaires across households in the DHS and the MICS and the other comparing survey and census household rosters, we estimate that approximately 6% of household members eligible for individual questionnaires are missing from the median survey. In 25% of surveys, the number of missing eligible household members exceeds 9%. Missing members are different from included ones along observable dimensions: they tend to be younger, less closely related to the household head, less educated and less likely to have ever been married. This leads to bias in important aggregate statistics, such as fertility. Revisiting Africa's fertility transition, we find that in the region, the average number of children ever born per woman according to the DHS and the MICS mostly exceeds the one reported in contemporaneous population censuses. In fact, in more than a third of survey-census pairs, the difference is bigger than 10%. Moreover, an increase in bias over time leads to an underestimation of the speed of the fertility transition in Sub-Saharan Africa. We show that according to population census data, fertility has declined twice as fast over the 2000s as reflected by DHS data.

Complementary evidence from other selected surveys suggests that endogenous sample selection is a widespread phenomenon. This calls for further systematic research on enumerator incentives, sample selection and their impact on statistical inference. We have already hinted at some open questions, such as the implications of endogenous sample selection in living standards surveys and labor force surveys for the measurement of poverty and labor market outcomes, respectively. Other open questions relate to the role of enumerators' sampling incentives in panel surveys. For example, do enumerators over-report out-migration of household members to make their workloads more manageable?

More generally, our findings raise questions about cost-effective survey design and implementation that can help limit endogenous sample selection ex-ante as well as econometric methods that can help correct for selection ex-post. This paper suggests that mandatory re-interviewing can help limit sample manipulation by enumerators. It also highlights that random assignment of additional questions can help quantify the extent of endogenous sample selection. Alternatively, census or administrative data can be leveraged for comparison, similarly allowing for the detection of endogenous sample selection. Both approaches then allow for the application of re-weighting techniques to correct for selection on observables.³¹ However, more work on both fronts, ex-ante design and ex-post correction methods, is clearly needed.

To enable more such research, more transparency on data collection and fieldwork operations will be necessary. For example, the publication of information on enumerators' employment contracts and pay structure is currently not standard in survey reports. Similarly, data quality monitoring processes are rarely systematically documented. In the absence of such transparency, collaborations between researchers and statistical offices or survey firms may be the most promising way forward.

Torsten Figueiredo Walter, New York University Abu Dhabi. Niclas Moneke, University of Oxford.

 $^{^{31}}$ We present an example of the application of re-weighting techniques for selection correction using census data in Appendix A.4.

References

- Abay, K. A., Berhane, G., Hoddinott, J., & Tafere, K. (2022). Respondent Fatigue Reduces Dietary Diversity Scores Reported from Mobile Phone Surveys in Ethiopia during the COVID-19 Pandemic. J Nutr., 152(10), 2269–2276.
- Ambler, K., Herskowitz, S., & Maredia, M. K. (2021). Are we done yet? Response fatigue and rural livelihoods. *Journal of Development Economics*, 153, 102736.
- Amirapu, A., & Gechter, M. (2020). Labor Regulations and the Cost of Corruption: Evidence from the Indian Firm Size Distribution. The Review of Economics and Statistics, 102(1), 34–48.
- Anderson, S. (2018). Legal origins and female hiv. American Economic Review, 108(6), 1407–39.
- Bardasi, E., Beegle, K., Dillon, A., & Serneels, P. (2011). Do Labor Statistics Depend on How and to Whom the Questions Are Asked? World Bank Economic Review, 25(3), 418–447.
- Beaman, L., & Dillon, A. (2012). Do household definitions matter in survey design? Results from a randomized survey experiment in Mali [Symposium on Measurement and Survey Design]. Journal of Development Economics, 98(1), 124– 135.
- Bongaarts, J. (2017). Africa's unique fertility transition. Population and Development Review, 43, 39–58.
- Bongaarts, J., & Casterline, J. (2013). Fertility transition: Is sub-saharan africa different? Population and Development Review, 38, 153–168.
- Chatterjee, S., & Vogl, T. (2018). Escaping Malthus: Economic Growth and Fertility Change in the Developing World. American Economic Review, 108(6), 1440– 67.
- Corno, L., Hildebrandt, N., & Voena, A. (2020). Age of marriage, weather shocks, and the direction of marriage payments. *Econometrica*, 88(3), 879–915.
- Crespi, L. P. (1945). The Cheater Problem in Polling. *Public Opinion Quarterly*, 9(4), 431–445.
- Crespi, L. P. (1946). Further Observations on the "Cheater" Problem. *The Public Opinion Quarterly*, 10(4), 646–649.

- Dervisevic, E., & Goldstein, M. (2023). He said, she said: The impact of gender and marriage perceptions on self and proxy reporting of labor. *Journal of Development Economics*, 161, 103028.
- Dillon, A., Bardasi, E., Beegle, K., & Serneels, P. (2012). Explaining variation in child labor statistics [Symposium on Measurement and Survey Design]. Journal of Development Economics, 98(1), 136–147.
- Dillon, A., Karlan, D., Udry, C., & Zinman, J. (2020). Good identification, meet good data. World Development, 127, 104796.
- Dillon, A., & Mensah, E. (2024). Respondent biases in agricultural household surveys. Journal of Development Economics, 166, 103198.
- Dupas, P., Falezan, C., Mabeu, M. C., & Rossi, P. (2023). Long-run impacts of forced labor migration on fertility behaviors: Evidence from colonial west africa (Working Paper No. 31993). National Bureau of Economic Research.
- Durant, H. (1946). The "Cheater" Problem. The Public Opinion Quarterly, 10(2), 288–291.
- Dutz, D., Huitfeldt, I., Lacouture, S., Mogstad, M., Torgovitsky, A., & van Dijk,
 W. (2021). Selection in Surveys: Using Randomized Incentives to Detect and Account for Nonresponse Bias (Working Paper No. 29549). National Bureau of Economic Research.
- Finn, A., & Ranchhod, V. (2015). Genuine Fakes: The Prevalence and Implications of Data Fabrication in a Large South African Survey. *The World Bank Economic Review*, 31(1), 129–157.
- Government of the Republic of Malawi. (2018). National health policy "towards universal health coverage" (tech. rep.).
- Hjort, J., & Poulsen, J. (2019). The arrival of fast internet and employment in africa. American Economic Review, 109(3), 1032–79.
- ICF. (1982-2022). Demographic and health surveys (various) [Datasets used: Various]. Rockville, Maryland, ICF.
- Jayachandran, S., & Pande, R. (2017). Why are indian children so short? the role of birth order and son preference. American Economic Review, 107(9), 2600– 2629.
- Jeong, D., Aggarwal, S., Robinson, J., Kumar, N., Spearot, A., & Park, D. S. (2023). Exhaustive or exhausting? Evidence on respondent fatigue in long surveys. Journal of Development Economics, 161, 102992.

- Kilic, T., Moylan, H., & Koolwal, G. (2021). Getting the (Gender-Disaggregated) lay of the land: Impact of survey respondent selection on measuring land ownership and rights. World Development, 146(100).
- LoPalo, M. (2023). Temperature, Worker Productivity, and Adaptation: Evidence from Survey Data Production. American Economic Journal: Applied Economics, 15(1), 192–229.
- Lowes, S., & Montero, E. (2021). The legacy of colonial medicine in central africa. American Economic Review, 111(4), 1284–1314.
- Masselus, L., & Fiala, N. (2024). Whom to ask? Testing respondent effects in household surveys. Journal of Development Economics, 168, 103265.
- Meyer, B. D., Mok, W. K. C., & Sullivan, J. X. (2015). Household Surveys in Crisis. Journal of Economic Perspectives, 29(4), 199–226.
- Michalopoulos, S., & Papaioannou, E. (2016). The long-run effects of the scramble for africa. American Economic Review, 106(7), 1802–48.
- Ministère de la Santé et de l'Hygiène Publique. (2021). Plan d'action national budgétisé de planification familiale 2021-2025 de côte d'ivoire (tech. rep.). République de Côte d'Ivoire.
- Ministry of Health, Republic of Ghana. (2020). National health policy: Ensuring healthy lives for all (tech. rep.).
- Ministry of Health, Republic of Kenya. (2022). The national reproductive health policy 2022-2032 (tech. rep.).
- Ministry of Health, Uganda. (2017). The national policy guidelines and service standards for sexual and reproductive health and rights (tech. rep.).
- Ministry of Statistics and Programme Implementation, India. (2005). Instruction Manual Fifth Economic Census (2005).
- Rossi, P. (2018). Strategic Choices in Polygamous Households: Theory and Evidence from Senegal. The Review of Economic Studies, 86(3), 1332–1370.
- Rubin, D. B. (1976). Inference and Missing Data. *Biometrika*, 63(3), 581–592.
- Ruggles, S., Cleveland, L., Lovaton, R., Sarkar, S., Sobek, M., Burk, D., Ehrlich, D., Heimann, Q., & Lee, J. (2024). Integrated public use microdata series, international: Version 7.5. Minneapolis, MN, IPUMS.
- Serneels, P., Beegle, K., & Dillon, A. (2017). Do returns to education depend on how and whom you ask? *Economics of Education Review*, 60, 5–19.

- UNICEF. (2000-2022). *Multiple indicator cluster surveys (mics)* [Datasets used: Various]. New York, USA, UNICEF [Distributor].
- Vogl, T. S. (2013). Marriage Institutions and Sibling Competition: Evidence from South Asia*. The Quarterly Journal of Economics, 128(3), 1017–1072.
- Vogl, T. S. (2016). Differential Fertility, Human Capital, and Development. The Review of Economic Studies, 83(1), 365–401.
- Young, A. (2012). The african growth miracle. *Journal of Political Economy*, 120(4), 696–739.
- Zipfel, C. (2024). The demand side of africa's demographic transition: Desired fertility, wealth, and jobs (tech. rep.). Stockholm School of Economics.

Figures

Figure 1: Question load and age distribution by gender in Togo MICS 2006

This figure plots the mean number of questions asked about female and male household members by age in panels (a) and (b), and their age distributions in panels (c) and (d). Age groups eligible for individual questionnaires are shaded in grey. Children under the age of 5 are eligible for the "Under-five questionnaire" and women between the ages of 15 and 49 are eligible for the "Woman's questionnaire". In the right-hand panels, the age range between 15 and 49 is shaded in gold to facilitate comparison with the same range in the left-hand panels. Details on the measurement of question load by gender and age are available in Appendix A.2.3.

Figure 2: Geographic coverage of surveys with randomly assigned man's questionnaire

This figure displays estimates of β from equation (1) relative to the control mean where the outcome variable is the number of eligible men in the household. The sample consists of all 181 DHS and MICS with a man's questionnaire that is randomly assigned across households. Circles indicate point estimates and bars indicate 95% confidence intervals. Surveys are sorted along the x-axis in ascending order of the point estimate. Every 5th survey is labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively. All estimates are reported in Table A3, column (3).

Figure 4: Effect of man's questionnaire on number of eligible and ineligible men

This figure displays estimates of β from equation (1) where the outcome variable is the number of eligible (black) and ineligible men in the household (red), respectively. The sample consists of all 181 DHS and MICS with a man's questionnaire that is randomly assigned across households. Circles indicate point estimates and bars indicate 95% confidence intervals. Surveys are sorted along the x-axis in ascending order of the point estimate on the number of eligible men. Every 5th survey is labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively. All estimates are reported in Table A3, columns (2) and (4).

Figure 5: Geographic coverage of DHS/MICS-census pairs

Figure 6: Effect of woman's/man's questionnaire on number of eligible women/men

This figure displays estimates of coefficients from the regression of the eligible number of women (in blue) and men (in black) on the eligibility of their household for the respective individual (woman's or man's) questionnaire. The sample consists of all 3 DHS with a woman's questionnaire that is randomly assigned across households. Circles indicate point estimates and bars indicate 95% confidence intervals. Surveys are sorted along the x-axis in ascending order of the point estimate on the number of eligible women. All surveys are labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively. All estimates are reported in Table A4, column (3).

Figure 7: Missing and excess women in DHS/MICS relative to census

This figure displays estimates of β_3 from equation (2) where the outcome variable in the number of women of eligible (blue) and ineligible age (red). The sample consists of all 76 DHS- and MICS-census pairs. Circles indicate point estimates and bars indicate 95% confidence intervals. Surveys are sorted along the x-axis in ascending order of the point estimate on the number of eligible women. Every 3rd survey is labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively. All estimates are reported in Table A5, columns (2) and (3).

Figure 8: Effect of man's questionnaire on the characteristics of eligible men

This figure displays estimates of β from equation 1 relative to the control mean where the outcome variable is age in Panel (a), having a close relationship to the household head in Panel (b), years of schooling in Panel (c) and having ever been married in Panel (d). The sample consists of all 181 DHS and MICS with a man's questionnaire that is randomly assigned across households. Note that marital status is only reported in the roster of more recent DHS. Therefore, the sample of surveys for this analysis is limited. See Section A.2.4 for details on the construction of all outcome variables. Standard errors are clustered at the household-level. Circles indicate point estimates and bars indicate 95% confidence intervals. Surveys are sorted along the x-axis in ascending order of the respective point estimate. All surveys are labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively. All estimates are reported in Table A7, columns (2) - (5).

Figure 9: Characteristics of eligible women in DHS/MICS relative to census

This figure displays estimates of β_3 from equation (2) relative to the census where the outcome variable is age in Panel (a), having a close relationship to the household head in Panel (b), years of schooling in Panel (c) and having ever been married in Panel (d). The sample consists of all 76 DHS- and MICS-census pairs. See Section A.2.4 for details on the construction of all outcome variables. Standard errors are clustered at the household-level. Circles indicate point estimates and bars indicate 95% confidence intervals. Surveys are sorted along the x-axis in ascending order of the respective point estimate. All surveys are labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively. All estimates are reported in Table A8, columns (2) - (5).

Figure 10: Children ever born in DHS/MICS relative to census in Sub-Saharan Africa

This figure displays estimates of β_3 from equation (2) relative to the census where the outcome variable is total number of live births of women. The sample consists of all 41 Sub-Saharan African DHS- and MICS-census pairs with information on children born. Standard errors are clustered at the household-level. Circles indicate point estimates and bars indicate 95% confidence intervals. Surveys are sorted along the x-axis in ascending order of the respective point estimate. All surveys are labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively. All estimates are reported in Table A8, column (6).

Figure 11: Fertility trends in SSA in the 2000s

Figure 12: Question load and age distribution in living standards surveys

(a) Question load by age: Tanzania HBS 2011

(c) Age distribution: Tanzania HBS 2011

(b) Question load by age: Zambia LCMS 2015

(d) Age distribution: Zambia LCMS 2015

This figure shows the distribution of the mean number of questions asked about household members by age in the 2011 Tanzanian Household Budget Survey (HBS) and the 2015 Zambian Living Conditions Monitoring Survey (LCMS) in the top panels (a) and (b). The bottom panels (c) and (d) show the age distributions in the two surveys. Shaded areas indicate survey modules that are only applied to specific age groups.

This figure plots the firm size distribution in the 2005 – Panel (a) – and the 2013 Indian Economic Census – Panel (b).

Vertical lines indicate firm size distribution in the 2005 - 1 and (a) - and the <math>2015 indicate Economic Census - 1 and (b). Vertical lines indicate firm size thresholds above which enumerators had to complete additional forms in 2005 (dashed line) and 2013 (solid line). In 2005, an address slip had to be completed for all firms with 10 or more employees. In 2013, Schedule 6C had to be completed for all firms with 8 or more employees.

Tables

	Length of mar	's questionnaire	Elasticity of	f sampled men	Share of missing men		
	(1)	(2)	(3)	(4)	(5)	(6)	
2000s	63.9864***	57.9442***	-0.0022**	-0.0018	0.0196***	0.0181***	
	(6.4742)	(6.9010)	(0.0009)	(0.0011)	(0.0050)	(0.0053)	
2010s	75.7705***	69.0714^{***}	-0.0014*	-0.0019**	0.0211^{***}	0.0219^{***}	
	(5.6666)	(6.9697)	(0.0009)	(0.0010)	(0.0043)	(0.0053)	
2020s	102.4518^{***}	103.1996^{***}	-0.0007	-0.0022	0.0219^{***}	0.0278^{***}	
	(10.3637)	(8.9780)	(0.0014)	(0.0015)	(0.0067)	(0.0081)	
Country FE	No	Yes	No	Yes	No	Yes	
$Mean \ 1990s$	103.0357	103.0357	-0.0097	-0.0097	0.0612	0.0612	
Ν	181	181	181	181	181	181	
\mathbb{R}^2	0.5152	0.7293	0.0265	0.4051	0.1558	0.5122	

Table I: Man's questionnaire and missing men over time

All specifications include survey program fixed effects. The omitted decade is the 1990s. The length of the man's questionnaire is measured by the number of questions listed in the questionnaire. See section 3.1.1 for details on the estimation of the share of missing men and section 3.3 for details on the estimation of the elasticity of sampled men. Robust standard errors in columns (1) and (2). Standard errors in columns (3)-(6) are bootstrapped using 100 repetitions.

	Dependent variable: Elasticity							
	(1)	(2)	(3)	(4)				
Mandatory Re-interviewing	0.00437***			0.00588***				
	(0.00149)			(0.00156)				
Field Check Tables		0.00072		0.00022				
		(0.00064)		(0.00059)				
Tablet			-0.00019	-0.00222***				
			(0.00080)	(0.00065)				
Mean dep var	-0.01028	-0.01031	-0.01028	-0.01031				
SD dep var	0.00952	0.00957	0.00952	0.00957				
Ν	181	178	181	178				
\mathbb{R}^2	0.03766	0.02231	0.02096	0.04367				

Table II: Elasticity of sample size and survey characteristics

The dependent variable is the elasticity of sampled men with respect to question load. The independent variables *Mandatory re-interviewing*, *Field check tables* and *Tablet* are indicator variables that take the value one if a survey was implemented with the respective feature, and zero otherwise. Additional details are provided in appendix A.2.5. Standard errors are bootstrapped using 1000 repetitions.

	Dependent variable: Elasticity								
	(1)	(2)	(3)	(4)	(5)				
ln(GDP pc PPP)	0.00110**	-0.00010	0.00100**	0.00121***	0.00047				
	(0.00049)	(0.00046)	(0.00050)	(0.00044)	(0.00066)				
Government Effectiveness	× /	0.00403***	× ,	× ,	0.00238^{*}				
		(0.00086)			(0.00124)				
Statistical Capacity Index		× ,	0.00008^{**}		0.00002				
			(0.00003)		(0.00004)				
Polity IV Score			. ,	-0.00017**	-0.00012				
				(0.00007)	(0.00010)				
Mean dep var	-0.01045	-0.01059	-0.01104	-0.01112	-0.01166				
SD dep var	0.00933	0.00948	0.01012	0.00915	0.00989				
Ν	179	159	125	129	92				
\mathbb{R}^2	0.02293	0.05547	0.04321	0.02114	0.03893				

Table III: Elasticity of sample size and country characteristics

The dependent variable is the elasticity of sampled men with respect to question load. Details on the independent variables are provided in appendix A.2.6. All specifications include survey program fixed effects. Standard errors are bootstrapped using 1000 repetitions.

A Appendix

A.1 Use of surveys in top social science papers

A.1.1 Surveys in top social science papers

To document the increasing importance of surveys in the social sciences we proceed as follows. We use Scopus API to automatically query the Scopus database for articles published in top social science journals between 2003 and 2023. For our search, we consider the following top journals from the below disciplines:

- Economics: American Economic Review,³² Econometrica, Journal of Political Economy, Quarterly Journal of Economics, Review of Economic Studies
- Demography: Demography, Population and Development Review
- Sociology: American Journal of Sociology, American Sociological Review
- Political Science: American Journal of Political Science, American Political Science Review, Journal of Politics

We download all articles published in these journals during the specified period. Subsequently, we search for the following keywords in title and abstract of all of these papers: "survey", "surveys", "surveyed", "surveying".

Using the resulting data, we find that the use of surveys has increased significantly in Economics, Political Science and Demography over the last 20 years while it has somewhat decreased in Sociology. Figure A23 shows the time trends for all four disciplines.

A.1.2 DHS and MICS in top social science papers

To determine the number of top social science papers with reference to the DHS or the MICS, we run a search for the keywords "Demographic and Health Survey(s)" and "Multiple Indicator Cluster Survey(s)" across all fields on JSTOR.³³ We implement the search using Constellate, a web-based text analytics service provided by ITHAKA, which allows us to automatically query the JSTOR collection. We restrict the publication time to 2013 to 2017 as this is the most recent five-year period for which all top journals that we consider are available on JSTOR.³⁴

 $^{^{32}}$ We exclude the May edition as it is not considered part of the top 5 journals in Economics.

³³We cannot rely on Scopus API for this because unlike JSTOR, it does have full-text access to all considered journals.

³⁴See Appendix A.1.1 for the set of top journals considered. Articles from 2018 onwards were not available for the Journal of Political Economy, the Quarterly Journal of Economics and the American Journal of Sociology at the time of the search.

A.2 Data

A.2.1 Selection of surveys

The main criterion for the inclusion of a survey into our main sample is the administration of a man's questionnaire in a randomly selected subset of households. Additionally, we restrict our sample to nationally representative surveys. This enables us to examine implications of endogenous sample selection for national statistics.

We identify relevant surveys from the official survey reports published on the DHS and MICS websites. To this end, we read more than 800 reports in five different languages and extract information on all survey components that were randomly varied across households, most importantly the man's questionnaire, biomarker collection and the domestic violence module. The combination of the information from the reports and the microdata allows us to understand the underlying randomization in detail. In particular, we pay close attention to the manner in which different randomized survey features were either bundled or cross-randomized and the respective treatment probabilities.

Among all 236 surveys that satisfy our criteria, we exclude 55 because they do not lend themselves to our analysis due to differences in survey design or data issues. All excluded surveys and the respective reasons for exclusion are listed in Table A10. First, we exclude 28 surveys that administered additional survey features, such as biomarker collection among children, in control households (without a man's questionnaire) that were not implemented treatment households. In these cases, differences in outcomes between treatment and control households cannot be attributed solely to the man's questionnaire. Second, we exclude 13 surveys in which eligibility for the man's questionnaire is conditional on marital status. Selection into individual questionnaires in these surveys is not comparable to selection in included surveys and thus results would not be directly comparable. Moreover, the resulting samples are not nationally representative. Third, we exclude 9 MICS due to data issues. For 6 MICS in which sampling is stratified by enumeration area and the presence of children in the household, we do not observe the latter stratification variable in the microdata. Thus we cannot control for stratum fixed effects. For 3 MICS, we are not able to merge the individual- and household-level microdata source files because identifiers do not match across files. Fourth, 3 DHS are excluded because their man's questionnaire does not have an upper age limit, thereby not allowing us to define a comparable group of ineligible men in these surveys. Finally, one DHS is excluded because treatment was randomized across enumeration areas rather than across households within enumeration areas, making comparisons with other surveys difficult, and one MICS is excluded due to contradicting information about treatment assignment in the survey report and the microdata.

A.2.2 Eligibility for individual questionnaires

To determine the age thresholds for the eligibility of household members for individual questionnaires, we systematically extract information on the age thresholds from the official survey reports and questionnaires for all surveys in our sample. Subsequently, we verify the consistency of the microdata with these thresholds.

A.2.3 Enumerator effort cost

We construct two proxies of the effort cost associated with household members of a given gender and age.

Questions listed. For all surveys in our respective samples, we count the total number of questions contained in the household roster (individual-level questions in the household questionnaire), the man's questionnaire and the woman's questionnaire. We proxy the effort cost associated with a (wo)man of eligible age with the sum of the number of questions in the roster and the individual questionnaire. The effort cost associated with ineligible household members is measured by the number of questions in the household roster.

We count questions as follows. We follow the numbering of questions in the official questionnaires and do not count sub-questions. For example, questions 32, 32A and 32B are counted as single question. Note that a small set of questions may be repeated multiple times for the same respondent. For example, women in recent DHS are asked several questions about each birth they have ever given. Independent of the number of births a woman has given, we only count each of these questions once. To ensure accurate counting, we conduct two independent counts for a sub-sample of 33 surveys. Reassuringly, we find a correlation coefficient of above 0.99 between counts, with a mean absolute deviation of less than 1%.

When counting questions in population and housing censuses, we differentiate between individual-level questions asked to women of fertile age (typically 12 years and older) and all other individual level questions. We think of the former questions as the equivalent of the woman's questionnaire and the latter questions as the equivalent of the household roster in the DHS and the MICS.

Questions asked. The number of questions asked to a given respondent is usually smaller than the total number of questions contained in questionnaires. This is because certain subsets of questions are only asked to respondents with specific characteristics. For example, in the MICS only women of eligible age who have ever given birth are asked about their birth history. To count the number of questions actually answered by each respondent, we manually match each question in the questionnaire with the corresponding variable in the microdata. In the MICS, there is a one-to-one link between questions listed in the questionnaire and variables in the dataset. Moreover, variable names in the microdata follow the question numbering in questionnaire, facilitating the matching. In the DHS and the PHC, this is not the case. IPUMS source variables have descriptive variable names that help with matching. DHS matching relies on variable labels and tabulations as variable names cannot be used due to DHS recoding process that names variables using standardized codes (e.g., hv104). Given the large number of questions in the DHS, the resulting matching process is very tedious and time-consuming (5-8 hours per survey). Therefore, we only conduct this exercise for a subset of DHS (31) while we complete it for all MICS in our sample.

In each of the three data sources, we ensure a variable is coded as missing if and only if the matched question was not asked about a given individual. Subsequently, we count the number of non-missing entries across all variables for each household member. To obtain the a measure of the effort cost associated with a given gender and age, we average the number of questions asked within gender-age cells.

A.2.4 Outcome variables

Ever married. We define having ever been married in a broad sense. In line with most surveys in our sample, we count all individuals that are married, living with a partner, separated, divorced or widowed as ever married. Information on the marital status is collected through different questionnaires in the surveys we work with. In the MICS, marital status is asked in the individual questionnaire, not in the household roster. The DHS initially operated in the same way, but gradually moved to systematically including a question about marital status in the household roster. While the roster only features a question on marital status in a some of the DHS conducted prior to 2012, it includes such a question for all surveys in our sample conducted thereafter. So, we observe the marital status of men in control households in all DHS conducted post 2012 and a subset of DHS conducted earlier.

Close relationship to household head. Nearly all censuses and surveys in our samples elicit information on the relationship of household members to the household head. The set of answer options varies greatly across surveys and censuses, however. To harmonize the information, we create an indicator variable that equals to 1 if a household member is closely related to the head of the household and zero otherwise. We define children, spouse(s), parents, parents-in-law and grandchildren as closely related to the head, and other relatives (e.g., uncles) and unrelated household members (e.g., domestic workers) as distantly related.

Years of schooling. Information on years of schooling is readily available in harmonized form in DHS and IPUMS-International census data. In the MICS and non-IPUMS censuses, we harmonize this information ourselves, combining information on the highest level and grade of education completed with the structure of the education system at the time of the survey. Note that we only consider formal education when doing so.

Number of biological children in the household. Most surveys in our sample include a module on the survival of parents in the household roster. For all children aged 17 and below, this module asks whether the biological mother and father are alive, and if so whether they live in the household. If the answer to both of these questions is affirmative, their line number is recorded. We measure the number of biological children each household member lives with by counting the number of children in the household for which they are indicated as the parent.

Children ever born. This variable captures the total number of children ever born alive to a woman. It is top-coded in some population censuses. To ensure comparability with matched surveys, we apply the same top-coding to the matched surveys.

A.2.5 Survey characteristics

Reading through the final reports from all 181 surveys in our main sample, we extract information on survey implementation and data processing. We systematically code up the below variables.

Field check tables. We determine if field check tables were used during survey implementation. These tables are sometimes also referred to as quality control tables and contain descriptive statistics of key indicators. They are produced regularly throughout the fieldwork period and are used to provide feedback to supervisors and surveyors.

Mandatory re-interviewing. We identify surveys that conduct mandatory reinterviewing. In this case, typically two sets of households are re-interviewed: first, a random subset of households in each enumeration area and second, all households which have been identified as outliers along key survey dimensions.

Use of tablets. We differentiate between surveys that use paper and tablet questionnaires. In the former case, responses are recorded on paper and later entered into computers. In the latter case, responses are directly recorded on tablets and later transmitted to a central server.

A.2.6 Country characteristics

GDP per capita. We use GDP per capita in constant 2017 international dollars from the World Bank's World Development Indicators as our measure of GDP per

capita. This dataset contains information on GDP per capita for 179 of the 181 country-years in which the surveys in our main sample were conducted (information for Cuba in 2014 and 2019 is not available).

Government Effectiveness. The Government Effectiveness indicator, one of the six dimensions of governance evaluated by the Worldwide Governance Indicators (WGI) project developed by the World Bank, offers a comprehensive measure of governmental performance, influencing economic development, public trust, and the overall quality of governance. The indicator assesses various dimensions of government performance, including the quality of public services, (e.g. effectiveness of service delivery in various domains such as education and health), the civil service capacity by evaluating the competence and autonomy of the civil service in policy implementation, the quality of policy formulation and the government's ability to execute policies effectively as well as the credibility of government commitment. The Government Effectiveness indicator is based on a wide range of data sources, including surveys of business executives, expert assessments from organizations, and surveys of citizens. The indicator is scored on a scale from -2.5 to +2.5, with a higher score indicating stronger government effectiveness. The WGI dataset contains information on Government Effectiveness for 161 out of 181 of the country-years in which the surveys in our main sample were conducted.

Statistical Capacity Index. The Statistical Capacity Index (SCI) is a measure created by the World Bank to evaluate a country's capability to gather, process, and distribute reliable statistics for policy-making and development planning. It assesses the effectiveness of national statistical systems in generating the essential data needed for decision-making, monitoring, and evaluation. The indicator is derived from three key dimensions based on the capacity of the country's adoption of internationally recommended standards and methods, (e.g. data collection protocol, classifications), the availability and frequency of key data sources (censuses and various surveys) and the regularity and promptness with which data is produced and published. The SCI is scored on a scale of 0 to 100, where higher scores indicate greater statistical capacity. The World Bank dataset contains information on the SCI score for 125 of the 181 country-years in which the surveys in our mains sample were conducted.

Polity IV score. The Polity IV score is a commonly used metric to assess a country's degree of democracy or autocracy. It is a component of the Polity Project hosted by the Center for Systemic Peace with the support of the Political Instability Task Force (PITF), which offers yearly data on the features and transitions of political regimes. The score is derived from the analysis of six components including qualities of executive recruitment (e.g. how leaders are chosen), constraints on executive authority (e.g. the extent to which institutional checks limit the leader's power) and

political competition. It also records changes in the institutionalized qualities of governing authority. The score ranges from -10 to +10 points. It is commonly grouped into three suggested regime categories: *autocracies* (-10 to -6), *anocracies* (-5 to +5), and *democracies* (+6 to +10). The Polity IV dataset contains information on the Polity IV score for 130 of the 181 country-years in which the surveys in our main sample were conducted.

A.3 Mechanisms

A.3.1 Enumerator selection

The eligibility of a given household for the man's questionnaire is revealed on the first page of the household questionnaire. In response to this information, supervisors can strategically assign enumerators to households with and without a man's questionnaire. This raises the question how the eligibility of a household for the man's questionnaire affects the identity of the enumerator recording the household roster. Leveraging information on the characteristics of enumerators from the DHS fieldworker questionnaire, available for 19 surveys in our sample, we empirically test how enumerator characteristics differ between households with and without a man's guestionnaire.³⁵ We find that in most surveys, enumerators in charge of the household roster are significantly less likely to be female in treatment households. The tendency to assign male enumerators to households with a man's questionnaire can be attributed to the survey program's objective to conduct same-sex individual interviews, i.e., to have male enumerators administer man's questionnaires and female enumerators administer woman's questionnaires. This implies that a male enumerator is required at households that are eligible for the man's questionnaire, but not at ineligible households. The effect of the man's questionnaire on age and education varies across surveys, both in sign and magnitude. Experience with previous DHS is negatively affected in most surveys, but also heavily positively affected in a few surveys. Figure A4 displays all the estimates.

In the face of these changes in enumerator characteristics, it is important to note that, consistent with the idea of moral hazard, selection of enumerators cannot explain the reductions in the number of eligible men as point estimates are barely affected by the inclusion of enumerator fixed effects (see Figure A5).

A.3.2 Respondent selection

The assignment to the man's questionnaire may alter the identity of the respondent to the household roster. In fact, we find that in almost all surveys, respondents in households with a man's questionnaire are less likely to be female, more likely be the household head as well as somewhat older and more educated (see Figure A24).

³⁵The DHS fieldworker questionnaire was introduced in 2015. Hence, enumerator information is not available for earlier surveys. The MICS does not publish any enumerator characteristics.

A.3.3 Heterogeneous effects by survey cluster characteristics

Are more eligible men missing in certain types of survey clusters? We compare the effect of the man's questionnaire on the number of eligible men in the household in rural and urban areas. As Figure A25 shows, we cannot detect a statistically significant difference in most surveys. But we find a significant positive difference in some surveys and a significant negative one in others. Hence, the differential impact of the man's questionnaire in rural and urban areas appears to be context dependent.

A.4 Correcting for bias in fertility

Can survey estimates of fertility be corrected by re-weighting on observables? As we detail below, at least in our sample of surveys, the bias cannot be fully corrected for using standard re-weighting techniques.

Thus, the correction exercise provides us with two novel insights: first, as hypothesised above, selection on observables appears to be a major driver of the estimated bias due to endogenous sample selection in fertility statistics in the surveys we study. Except for one country, all re-weighted estimates of fertility relative to an adjacent census fall below their unweighted counterparts. This provides confirmation of our proposed mechanism: enumerator incentives to avoid high-effort cost individuals shape sample selection based on observable characteristics, which introduces deviations from random sampling and in turn systematically inflates the number of children ever born per woman in most surveys we study.

Second, although correction reduces bias, we also find strong evidence of remaining bias indicating additional enumerator selection on unobservables. In around half of cases suitable for correction, the remaining bias in fertility is still statistically significantly different from zero. Enumerators appear to receive substantially more information on the ground regarding the respective effort cost across individuals than the few variables they have to record for every household member in the listing can reveal.

Our correction methodology is standard and aims to emulate the situation in which end-users of survey data would find themselves in once they suspect endogenous sample selection. Faced with potentially biased estimates of outcome variables due to endogenous sample selection, a natural correction approach would proceed as follows: find marginal distributions of population parameters for variables also collected for every individual in the survey, re-weight observations in the survey to match the population distribution, re-estimate aggregate statistics or regressions using the reweighted sample.

Commonly called raking, we implement such a standard re-weighting procedure by focusing on the subset of survey samples for which survey-census-pairs can be formed, as in our main result documenting bias in fertility in Figure 10. We obtain marginal distributions of the maximum number of variables asked in most census and survey pairs, i.e. age, relationship to household head, years of schooling and marriage status.³⁶ We then rake the survey sample weights using iterative post-stratification until the survey's marginal distributions are jointly indistinguishable from the census' distribution of the same variables.³⁷ Finally, we re-estimate our main fertility results using the re-weighted sample. Figure A19 compares the unweighted with the re-weighted estimates for women's number of children ever born relative to the census.

Out of the 34 survey-census pairs that have all listing variables available for raking, 27 pairs were statistically significantly positive in un-weighted specifications. After reweighting, 18 pairs still remain statistically significantly positive. Before correction, mean bias among those with statistically significant positive bias was 0.12 additional children ever born, whereas correction reduces this to 0.06 for the original 27 pairs and 0.09 additional children ever born for the remaining 18 pairs.

As robustness exercise and proof-of-concept, we also perform re-weighting on the men's fertility sample of surveys with a randomised men's questionnaire, where we use the control group's marginal distributions of listing variables as arguably imperfect proxy of underlying population marginal distributions. Irrespective of potential SUTVA violations, such survey-internal re-weighting may still represent the end-users only hope to correct for bias in the absence of suitable population parameters. Results are very much in line with the above findings for re-weighting based on population marginal distributions: substantial selection on observables appears present, but large biases in fertility estimates remain.

Overall, our correction attempts echo findings reported by Dutz et al. (2021) that selection on unobservables may present serious challenges in surveys that are hard to correct for using standard techniques.

³⁶To account for focal-number bunching of age in censuses and due to the scarcity of the age distribution in some survey samples, we aggregate age into standard five-year bins. Years of schooling is aggregated to four bins: no, primary, secondary or tertiary education.

³⁷Results for single-variable raking, when using, for example only individuals' age bin, are qualitatively unchanged, although the bias correction is less effective than multivariate raking in most cases.

A.5 Appendix Figures

		HOUSEHOLD QUESTIONNAIRE GHANA 2011						
HOUSEHOLD INFORMATION PANEL		НН						
HH1. Locality Name Cluster No.:		HH2. Household Number:						
HH3. Interviewer name and number:		HH4. Supervisor name and number:						
HH5. Date of interview: (DD/ MM / YYYY) / /2011		HH5A: Is the household selected for the male survey? Yes 1 No 2						
HH6. Area:		HH7.Region	HH7A.District	HH7B.	HH7C.			
Urban	1			Dist-type	Sub-dist			
Rural	2							
HH7D. Structure Address:		HH7E: Contact No of HH:						

WE ARE FROM THE GHANA STATISTICAL SERVICE. WE ARE CONDUCTING A SURVEY THAT IS CONCERNED WITH FAMILY HEALTH AND EDUCATION. I WOULD LIKE TO ASK YOU A FEW QUESTIONS ON THESE AREAS. THE INTERVIEW WILL TAKE ABOUT 45 MINUTES. ALL THE INFORMATION WE OBTAIN WILL REMAIN STRICTLY CONFIDENTIAL AND YOUR ANSWERS WILL NEVER BE SHARED WITH ANYONE.

MAY I START NOW?

□Yes, permission is given ⊠Go to HH10 to get signature, then HH18 to record time, then begin interview. □No, permission is not given ⊠Complete HH9. Discuss this result with your supervisor.

Figure A1: MICS, Ghana 2011: First page of household questionnaire

HH18.		HOUSEHOLD	D LISTING FO	RM										HL
Record the ti Hour		FIRST, PLEASE TELL ME THE NAME OF EACH PERSON IN YOUR HOUSEHOLD WHO USUALLY LIVES HERE, STARTING WITH THE HEAD OF THE HOUSEHOLD. List the head of the household in line 01. List all household members (HL2), their relationship to the household head (HL3), and their sex (HL4) Then ask: ARE THERE ANY OTHERS WHO LIVE HERE, EVEN IF THEY ARE NOT AT HOME NOW? (THESE MAY INCLUDE CHILDREN CURRENTLY IN SCHOOL OR AT WORK). If yes, complete listing for questions HL2-HL4. Then, ask questions starting with HL5 for each person at a time. Use an additional questionnaire if all rows in the household listing form have been used.										4)		
	_					For women age 15-49	For men age 15-59	For children age 5-14	For children under 5	For all household members	For children age 0-17 years			
HL1. Line number	HL2. Name	HL3. WHAT IS THE RELATION- SHIP OF (name) TO THE HEAD OF HOUSE- HOLD?	HL4. IS (name) MALE OR FEMALE? 1 Male 2 Female	HL5. WHAT IS (name)'S DATE OF BIRTH? 98 DK 9998 DK	HL6. HOW OLD IS (name)? Record in completed years. If age is 95 or above, record '95'	HL7. Circle line number if woman is age 15-49	HL7A. Check If HH5A=1 Circle line number if man is age 15-59	HL8. WH0 IS THE MOTHER OR PRIMARY CARETAKER OF THIS CHILD? Record line number of mother/ caretaker	HL9. WHO IS THE MOTHER/ PRIMARY CARETAKER OF THIS CHILD? Record line number of mother/ caretaker	HL10. DID (name) STAY HERE LAST NIGHT? 1 Yes 2 No	HL11. IS (name)'S NATURAL MOTHER ALIVE? 1 Yes 2 No ^M HL13 8 DK ^M HL13	HL12. DOES (name)'S NATURAL MOTHER LIVE IN THIS HOUSEHOLD? Record line number of mother or 00 for "No"	HL13. IS (name)'S NATURAL FATHER ALIVE? 1 Yes 2 Not Next Line 8 DK3 Next Line	HL14. DOES (name)'S NATURAL FATHER LIVE IN THIS HOUSEHOLD? Record line number of father or 00 for "No"
Line	Name	Relation*	M F	Month Year	Age	15-49	15-59	Mother	Mother	Y N	Y N DK	Mother	Y N DK	Father
01		01	1 2			01	01			1 2	1 2 8		1 2 8	
02			1 2			02	02			1 2	1 2 8		128	
03			1 2			03	03			1 2	1 2 8		1 2 8	
04			1 2			04	04			1 2	1 2 8		128	

Figure A2: MICS, Ghana 2011: Household roster

Figure A3: Effect of man's questionnaire with and without male biomarker collection

This figure displays estimates of β from equation (1) relative to the control mean where the outcome variable is the number of eligible men in the household. The sample consists of all 181 DHS and MICS with a man's questionnaire that is randomly assigned across households. Circles indicate point estimates and bars indicate 95% confidence intervals. Estimates from surveys that include biomarker collection from eligible men are shown in blue. Surveys are sorted along the x-axis in ascending order of the point estimate. Every 5th survey is labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively. All estimates are reported in Table A3, column (3).

Figure A4: Effect of man's questionnaire on enumerator characteristics

Figure A5: Within-enumerator effect of man's questionnaire on number of eligible men

This figure displays estimates of β from equation (1) relative to the control mean where the outcome variable is the number of eligible men in the household. The sample consists of all 181 DHS and MICS with a man's questionnaire that is randomly assigned across households. Circles indicate point estimates and bars indicate 95% confidence intervals. Surveys are sorted along the x-axis in ascending order of the point estimate excluding enumerator fixed effects. Every 5th survey is labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively.

Figure A6: Effect of man's questionnaire on total number of men in the household

This figure displays estimates of β from equation (1) relative to the control mean where the outcome variable is the total number of men in the household. The sample consists of all 181 DHS and MICS with a man's questionnaire that is randomly assigned across households. Circles indicate point estimates and bars indicate 95% confidence intervals. Surveys are sorted along the x-axis in ascending order of the point estimate. Every 5th survey is labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively. All estimates are reported in Table A3, column (6).

Figure A7: Share of eligible men who are omitted vs. whose age is displaced

This figure displays estimates of the share of eligible men that is missing because their age has been displaced such that they fall out of the eligible age range ("displacement" in orange) and the share that is missing because they have been entirely omitted from the household roster ("omission" in blue). Surveys are sorted along the x-axis in descending order of the number of eligible men missing relative to the control group.

(a) Total number of questions listed (b) Mean number of questions asked

Figure A8: Question load of eligible women relative to ineligible women

This figure plots the question load of eligible women relative to ineligible women in the DHS/MICS against the same ratio in the matched population and housing censuses (PHC). In Panel (a), question load is measured by the total number of questions listed in the in the roster and the woman's questionnaire. In Panel (b), it is measured by the mean number of question answered about women of eligible and ineligible age. Panel (a) includes data on all 21 MICS-census pairs and all 46 DHS-census pairs. Panel (b) excludes 23 DHS-census pairs. See Appendix A.2.3 for more information.

Figure A9: Bounds of missing women in DHS/MICS relative to census

This figure displays estimates of the upper and lower bounds of missing women, indicated by blue diamonds. Grey shaded bars indicate 95% confidence intervals. The sample consists of all 76 DHS- and MICS-census pairs. Surveys are sorted along the x-axis in ascending order of the point estimate of the lower bound. Every 3rd survey is labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively. All estimates are reported in Table A5, columns (4) and (5).

This figure displays estimates of the upper and lower bounds of missing men derived using the difference-in-differences approach described in section 3.2.1 as well as estimates of missing men from the comparison of households with and without a man's questionnaire as detailed in section 3.1.1. Black diamonds indicate upper and lower bounds. The area in between bounds is also colored in black. Grey bars indicate 95% confidence intervals of the bounds. Orange circles indicate the point estimates exploiting the random assignment of the man's questionnaire. Dashed orange bars indicate the 95% confidence intervals of these estimates. The sample consists of all 33 surveys for which both estimation approaches are feasible. Surveys are sorted along the x-axis in ascending order of the point estimate of the lower bound. All surveys are labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively.

Figure A11: Elasticity of sampled men with respect to question load

This figure displays estimates of the elasticity of sampled men with respect to question load. Point estimates are indicated by black circles. Black bars indicate 95% confidence intervals. The sample consists of all 181 surveys with a man's questionnaire that is randomly assigned across households. Surveys are sorted along the x-axis in ascending order of the point estimate. Every 5th survey is labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively.

Figure A12: Elasticity of sampled women with respect to question load

This figure displays estimates of the elasticity of sampled women with respect to question load. Upper and lower bounds of the elasticity are indicated by blue diamonds. The area between the bounds is also colored in blue. Grey shaded bars indicate the 95% confidence intervals of the bounds. The sample consists of all 76 survey-census pairs. Surveys are sorted along the x-axis in ascending order of the point estimate. Every 3rd survey is labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively.

Figure A13: Elasticity of sample size with respect to question load: woman's vs. man's questionnaire

This figure displays estimates of the elasticity of sample size with respect to question load. Upper and lower bounds of the elasticity of sampled eligible women with respect to the question load of women are indicated by blue diamonds. The area between the bounds is also colored in blue. Grey shaded bars indicate the 95% confidence intervals of the bounds. Point estimates of the elasticity of sampled eligible men with respect to the question load of men are indicated by orange circles. Dashed orange bars indicate the 95% confidence intervals of these estimates. The sample consists of all 33 surveys for which the estimation of both elasticities is feasible. Surveys are sorted along the x-axis in ascending order of the point estimate of the lower bound. All surveys are labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively.

Figure A14: Effect of man's questionnaire on number of eligible men by age group

This figure shows the smoothed values from a kernel-weighted local polynomial regression of survey-level regression coefficients of eligible men in the household on the eligibility for the man's questionnaire by age group. The three considered age groups are (i) the ten-year band just above the lower eligibility threshold (typically 15-24), (ii) the 10-year band just below the upper eligibility threshold (typically 40-49) and (iii) the remaining eligible ages in between (typically 25-39).

Figure A15: Selection on observables vs. missing men

This figure plots coefficients from regressions of individual characteristics of eligible men – age in panel (a), close relationship to household head in panel (b), years of schooling in panel (c), ever married in panel (d) – on household eligibility for the man's questionnaire on the y-axis. Coefficients from regressions of the number of eligible men on household eligibility for the man's questionnaire are plotted on the x-axis (all panels). Each black dot represents a survey. The grey line represents a linear fit, with the 95% confidence interval indicated by the shaded area.

Figure A16: Selection on observables vs. missing women

This figure plots differences in average individual characteristics of women of eligible age – age in panel (a), close relationship to household head in panel (b), years of schooling in panel (c), ever married in panel (d) – between surveys and matched censuses on the y-axis. The lower bound of missing women is plotted on the x-axis (all panels). Each blue dot represents a survey. The blue line represents a linear fit, with the 95% confidence interval indicated by the shaded area.

Figure A17: Number of children ever born to eligible women in DHS/MICS relative to census against missing women in Sub-Saharan Africa

This figure displays estimates of β from equation (1) relative to the control mean where the outcome variable is the number of biological children of men living in the household. The sample consists of all 117 DHS and MICS in Sub-Saharan Africa with a man's questionnaire that is randomly assigned across households and a module on parental survival. Circles indicate point estimates and bars indicate 95% confidence intervals. Standard errors are clustered at the household level. Surveys are sorted along the x-axis in ascending order of the point estimate. Every 5th survey is labelled. Survey labels are composed of three-letter country codes, followed by the year of the survey and a single letter D or M standing for DHS or MICS, respectively. All estimates are reported in Table A7, column (6).

Figure A19: Number of children ever born in DHS/MICS relative to census before and after re-weighting

Figure A20: Question load and age distribution in the Zambian Labor Force Survey

This figure shows the distribution of the mean number of questions asked about household members by age in the 2017 and 2019 Zambian Labor Force Survey (LFS) in the top panels (a) and (b). The bottom panels (c) and (d) show the age distributions in the two survey-years. Vertical bars indicate the age thresholds above which household members are eligible for labor modules in 2017 (dashed line) and 2019 (solid line).

Figure A21: Indian Economic Census 2005: Address slip

40x10 mm Sixth Econo	mic Census 2012 Directory of Establishment Schedule 60	Sixth Econor	nic Census 2012 Directory of Establishment Schedule 6C
Identification Particulars State/UT	District		
Tahsil/Tahuka/P.S./ Dev. Block/Circle/ Mandal	Town/ Village		
Ward Code No. (only for Town) Block No.	- Page No. C	onfidential her filled in	Page No. Confid when
Information on Directory of Establishments (for establishments with 8	or more workers)	Information on Directory of Establishments (for establishments with 8 or establishments)	r more workers)
1 Page No.of Schedule 6A	2 SI. Number (To be copied from col. 26 of Schedule 6A)	Page No.of Schedule 6A	2 SI. Number (To be copied from col. 26 of Schedule 6A)
3 Name and Address of the Establishment along with PAN & TAN. If it's a Branch Office, fill in items 3 & 4, else item 4 only.	4 Name and Address of the Main Office along with PAN & TAN.	3 Name and Address of the Establishment along with PAN & TAN. If it's a Branch Office, fill in items 3 & 4, else item 4 only.	4 Name and Address of the Main Office along with PAN & TAN.
3.1 Regional Language	4.1 Regional Language	3.1 Regional Language	4.1 Regional Language
Traine			
House No. Lane	House No. Lane	House No. Lane	House No. Lane
Pin Code	Pin Code	Pin Code	Pin Code
Name	Name	Name	Name
House No. Lane	House No. Lane	House No. Lane	House No. Lane
Pin Code	Pin Code	Pin Code	Pin Code
.3 Phone/ Mobile	4.3 Phone/ Mobile	3.3 Phone/ Mobile	4.3 Phone/ Mobile
.4 Fax	4.4 Fax	3.4 Fax	4.4 Fax
.5 E-mail	4.5 E-mail	3.5 E-mail	4.5 E-mail
.6 PAN	4.6 PAN	3.6 PAN	4.6 PAN
3 7 TAN	4.7 TAN	3710	4.7 TAN
 Note: Information for 5-9 is to be copied from relevant columns of Schedule Description of major activity (col. no. 11) 	EA 14 Registration Information: Whether registered or not? (Yes-1, No-0)	 Note: Information for 5-9 is to be copied from relevant columns of Schedule Description of major activity (col. no. 11) 	6A 14 Registration Information: Whether registered or not? (Yes-1, No-0)
	15 If Answer of item 14 is Yes, then enter the registration inform using codes (Yes-1, No-0)	ation	15 If Answer of item 14 is Yes, then enter the registration informatio using codes (Yes-1, No-0)
	15.1 Shops and Commercial Establishments Act		15.1 Shops and Commercial Establishments Act
	15.2 Companies Act, 1956		15.2 Companies Act, 1956
Broad activity code (col. no. 12)	15.3 Central Excise/Sales Tax Act	6 Broad activity code (col. no. 12)	15.3 Central Excise/Sales Tax Act
7 NIC-2008 3 digit code (col. no. 13)	15.4 Factories Act, 1948	7 NIC-2008 3 digit code (col. no. 13)	15.4 Factories Act, 1948
Ownership code (col. no. 15)	15.5 Societies Registration Act	8 Ownership code (col. no. 15)	15.5 Societies Registration Act
Total number of workers (col. no. 25)	15.6 Co-operative Societies Act	9 Total number of workers (col. no. 25)	15.6 Co-operative Societies Act
0 Year of start of operation under	15.7 Directorate of Industries	10 Year of start of operation under	15.7 Directorate of Industries
current ownership Does a computer and/or internet facility exist in the	15.9 KUCKURADO Handleren Handlerefe	current ownership 11 Does a computer and/or internet facility exist in the	15.9 KUCAURAC Handless Handless fr
establishment? (Both-1, Only computer-2, None-3) Whether using power in production of goods and services?	13.6 KYL/KVIB/DC: Handloom/Handicraits	establishment? (Both-1, Only computer-2, None-3) 22 Whether using power in production of goods and services?	13.0 KVIUKVIBUC; HANGKONT/HANGKTAITS
(Yes-1, No-0)	15.9 Registered with other agencies	(Yes-1, No-0) (Yes-1, No-0)	15.9 Registered with other agencies
mineurer an exporting unit? (res-1, No-0)	Particulars of Field Officers Checked and found corr Name of the Enumerator Name of the Summarizer	rect.	Particulars of Field Officers Checked and found correct
Instructions for Field Officers Use only arabic numerals as indicated here.	Hame of the Endinerator Hame of the Supervisor	Instructions for Field Officers Use only arabic numerals as indicated here.	Name or die Supervisor
0 1 2 3 4 5 6 7 8 9	Signature of the Enumerator Signature of the Supervisor	0 1 2 3 4 5 6 7 8 9	Signature of the Enumerator Signature of the Supervisor
Do not fold the schedule. Use black/blue ink ball point pen,		Do not fold the schedule. Use black/blue ink ball point pen,	
keep schedules on the board provided for this purpose. • Write in the centre of the boxes without touching the boundaries.	Enumerator Supervisor	keep schedules on the board provided for this purpose. • Write in the centre of the boxes without touching the boundaries.	Enumerator Supervisor
- foreid energy the Oliver of energy times		 Avoid over writing & in case of corrections 	

Figure A22: Indian Economic Census 2013: Directory of Establishment Schedule (Schedule 6C)

Figure A23: Use of surveys in top social science publications

This figure shows the share of articles published in top social science journals that mention the keywords "survey", "surveys", "surveyed" or "surveying" in title or abstract by discipline since 2003. Dots are data points and lines are smoothed trends, using an Epanechnikov kernel with a bandwidth of 2.

Figure A24: Effect of man's questionnaire on respondent characteristics

Figure A25: Effect of man's questionnaire on number of eligible men by urban/rural

A.6 Appendix Tables

Table A1: DHS and MICS	with randomly	assigned man's	questionnaire
------------------------	---------------	----------------	---------------

Country code	Country name	DHS	MICS
ALB	Albania	2008, 2017	NA
ARM	Armenia	2000, 2005, 2010, 2015	NA
AZE	Azerbaijan	2006	NA
BDI	Burundi	2010, 2016	NA
BEN	Benin	1996, 2001, 2006, 2011	2014
BFA	Burkina Faso	1998, 2003, 2010, 2021	NA
BGD	Bangladesh	2004	NA
BOL	Bolivia	1998, 2003, 2008	NA
CAE	Control African Bopublic	1996	NA 2006 2010 2018
CIV	Côte d'Ivoire	1994 1998 2011 2021	N A
CMR	Cameroon	1998	2014
COD	Congo - Kinshasa	2007	NA
COG	Congo - Brazzaville	2005	2014
COM	Comoros	1996, 2012	NA
CUB	Cuba	NA	2014, 2019
ETH	Ethiopia	2000, 2005	NA
FJI	Fiji	NA 2000 2010 2010	2021
GAB	Gabon	2000, 2012, 2019 NA	2018
GHA	Ghana	1998 2008 2014	2006 2011 2017
GIN	Guinea	1999, 2005, 2018	NA 2011, 2011
GMB	Gambia	2013, 2019	2018
GNB	Guinea-Bissau	NA	2014, 2018
GTM	Guatemala	2014	NA
HND	Honduras	2011	2019
HTI	Haiti	1994, 2000, 2005, 2012	NA
IND	India	2005, 2015, 2019	IN A.
KGZ	Kyrgyzstan	2012	NA
KHM	Cambodia	2010, 2014	NA
KIR	Kiribati	NA	2018
LAO	Laos	NA	2017
LBR	Liberia	2013, 2019	NA
LSO	Lesotho	2004, 2009, 2014	2018
MDA	Moldova	2005	2012 N A
MLI	Madagascar	2003, 2008	2015
MMR	Myanmar (Burma)	2015	NA
MNG	Mongolia	NA	2013, 2018
MOZ	Mozambique	1997, 2003	NA
MRT	Mauritania	NA	2007, 2015
MWI	Malawi	1992, 2000, 2004, 2010, 2015	2006, 2013, 2019
NAM	Namibia	2000, 2006, 2013	NA NA
NGA	Nigeria	2003 2008 2013 2018	NA
NIC	Nicaragua	1998	NA
NPL	Nepal	2006, 2011, 2016	2019
PER	Peru	1996	NA
PHL	Philippines	2003	NA
PNG	Papua New Guinea	2016	NA
RWA	Rwanda	2000, 2005, 2010	N A N A
SLF	Sierra Leone	2003, 2010, 2014, 2013, 2010 2008, 2013, 2010	NA 2017
SUR	Suriname	NA	2018
TCA	Turks and Caicos Islands	NA	2019
TCD	Chad	1996, 2004	2019
TGO	Togo	1998, 2013	2010
THA	Thailand	NA	2019, 2022
TLS	Timor-Leste	2009	NA
TUN	Tunisia	NA NA	2019
TUV	Tuvalu	NA	2019
TZA	Tanzania	1991, 1996, 2004, 2010, 2015, 2022	NA
UGA	Uganda	1995, 2000, 2006, 2011, 2016	NA
UKR	Ukraine	2007	NA
UZB	Uzbekistan	2002	NA
V IN IVI W/SM	vietnam Samoa		2020
XKX	Republic of Kosovo	NA	2013, 2019
ZAF	South Africa	2016	NA
ZMB	Zambia	1996, 2001	NA
ZWE	Zimbabwe	1994, 1999	2014, 2019

Table A2: MICS/DHS-Population Census pairs

Country	Survey	Survey Year	PHC Year	Source	Statistical Office
BEN	DHS	2001	2002	IPUMS	National Institute of Statistics and Economic Analysis
BEN	DHS	2011	2013	IPUMS	National Institute of Statistics and Economic Analysis
BEN	MICS	2014	2013	IPUMS	National Institute of Statistics and Economic Analysis
BFA	MICS	2006	2006	IPUMS	National Institute of Statistics and Demography
BOL	DHS	1994	1992	IPUMS	National Institute of Statistics
CMB	DHS	2003	2001	IPUMS	Central Bureau of Census and Population Studies
CMR	MICS	2004	2005	IPUMS	Central Bureau of Census and Population Studies
CRI	MICS	2011	2011	IPUMS	National Institute of Statistics and Censuses
CUB	MICS	2010	2012	IPUMS	Office of National Statistics
CUB	MICS	2014	2012	IPUMS	Office of National Statistics
DOM	MICS	2000	2002	IPUMS	National Statistics Office
GHA	DHS	1998	2000	IPUMS	Ghana Statistical Services
GHA	DHS	2008	2010	IPUMS	Statistical Services
KEN	DHS	1989	1989	IPUMS	National Bureau of Statistics
KEN	DHS	1998	1999	IPUMS	National Bureau of Statistics
KEN	DHS	2008	2009	IPUMS	National Bureau of Statistics
KHM	DHS	2000	1998	IPUMS	National Institute of Statistics
KHM	DHS	2010	2008	IPUMS	National Institute of Statistics
KHM	DHS	2014	2013	IPUMS	National Institute of Statistics
KHM	DHS	2021	2019	IPUMS	National Institute of Statistics
LAO	MICS	2006	2005	IPUMS	Statistics Bureau Statistics Bureau
LBB	DHS	2017	2013	IPUMS	Institute of Statistics and Geo-Information Systems
LBR	DHS	2009	2008	IPUMS	Institute of Statistics and Geo-Information Systems
LSO	DHS	2004	2006	IPUMS	Bureau of Statistics
MEX	MICS	2015	2015	IPUMS	National Institute of Statistics, Geography, and Informatics
MMR	DHS	2015	2014	IPUMS	Central Statistical Organization
MNG	MICS	2010	2010	NSO	National Statistical Office
MOZ	DHS	1997	1997	IPUMS	National Institute of Statistics
MOZ	DUS	2008	2007	IPUMS	National Institute of Statistics
MWI	DHS	2009	2007	IPUMS	National Institute of Statistics
MWI	DHS	2000	1998	IPUMS	National Statistical Office
MWI	MICS	2006	2008	IPUMS	National Statistical Office
MWI	DHS	2010	2008	IPUMS	National Statistical Office
NER	DHS	2012	2012	NSO	National Institute of Statistics
PER	DHS	1991	1993	IPUMS	National Institute of Statistics and Informatics
PER	DHS	2007	2007	IPUMS	National Institute of Statistics and Informatics
PER	DHS	2009	2007	IPUMS	National Institute of Statistics and Informatics
RWA	DHS	1990	1992	IPUMS	National Institute of Statistics
BWA	DHS	2000	2002	IPUMS	National Institute of Statistics
RWA	MICS	2000	2002	IPUMS	National Institute of Statistics
SEN	DHS	2012	2013	IPUMS	National Agency of Statistics and Demography
SEN	DHS	2014	2013	IPUMS	National Agency of Statistics and Demography
SEN	DHS	2015	2013	IPUMS	National Agency of Statistics and Demography
SLE	DHS	2013	2015	IPUMS	Statistics Sierra Leone
TCO	MICS	2016	2015	IPUMS	Statistics Sherra Leone National Institute of Statistics (INSEED)
TTO	MICS	2010	2010	IPUMS	Central Statistical Office
TZA	DHS	2003	2002	IPUMS	National Bureau of Statistics
TZA	DHS	2004	2002	IPUMS	National Bureau of Statistics
TZA	DHS	2010	2012	IPUMS	National Bureau of Statistics
TZA	DHS	2011	2012	IPUMS	National Bureau of Statistics
UGA	DHS	2000	2002	IPUMS	Bureau of Statistics
UGA	DHS	2014	2014	IPUMS	Bureau of Statistics
UGA	MICS	2010	2014 2011	IPUMS	Dureau of Statistics
VEN	MICS	2012	2001	IPUMS	National Institute of Statistics
VNM	MICS	2010	2009	IPUMS	General Statistics Office
VNM	MICS	2020	2019	IPUMS	General Statistics Office
ZAF	DHS	2016	2016	IPUMS	Statistics South Africa
ZMB	DHS	1992	1990	IPUMS	Central Statistical Office
ZMB	DHS	2001	2000	IPUMS	Central Statistical Office
ZWE	DHS	2010	2012	IPUMS	Central Statistical Office

		1	т. 1	-1	Tetal	
Survey	Eligib Absolute	Relative	Ineligit Absolute	Relative	Absolute	Ν
ALB DHS 2008	-0.055 (0.017)	-0.065 (0.020)	0.009 (0.014)	0.012 (0.018)	-0.046 (0.020)	7,999
ALB DHS 2017	-0.089 (0.013)	-0.089 (0.013)	0.001 (0.009)	0.001 (0.017)	-0.088 (0.014)	15,823
ARM DHS 2000	-0.051 (0.023) 0.120 (0.021)	-0.050 (0.022) 0.140 (0.022)	0.023 (0.021)	0.031 (0.029) 0.020 (0.027)	-0.028 (0.029) 0.106 (0.026)	5,980 6 705
ARM DHS 2003	-0.034(0.020)	-0.043(0.025)	-0.015(0.018)	-0.023(0.027)	-0.049(0.020)	6,700
ARM DHS 2015	-0.017(0.016)	-0.023(0.022)	0.006(0.014)	0.008(0.020)	-0.012(0.021)	7,893
AZE DHS 2006 BDI DHS 2010	-0.105(0.022) 0.030(0.020)	-0.085(0.017) 0.028(0.018)	$0.073 (0.016) \\ 0.003 (0.015)$	0.160 (0.037) 0.006 (0.032)	-0.031 (0.025) 0.028 (0.025)	7,171
BDI DHS 2010 BDI DHS 2016	-0.108(0.014)	-0.101(0.013)	-0.028(0.013)	-0.054(0.032)	-0.137(0.019)	15,977
BEN DHS 1996	-0.091 (0.024)	-0.091 (0.023)	0.018 (0.035)	0.019 (0.038)	-0.073 (0.045)	4,498
BEN DHS 2001 BEN DHS 2006	-0.141 (0.024) -0.101 (0.014)	-0.125 (0.020) -0.092 (0.013)	0.064 (0.023) 0.040 (0.013)	$0.116 (0.043) \\ 0.078 (0.025)$	-0.077 (0.035)	5,768 17.489
BEN DHS 2011	-0.167(0.014)	-0.150(0.012)	0.040(0.013) 0.061(0.013)	0.117 (0.025)	-0.106(0.020)	17,400 17,422
BEN DHS 2014	-0.082(0.017)	-0.077 (0.015)	-0.010(0.015)	-0.015(0.024)	-0.092(0.024)	14,073
BFA DHS 2003	-0.148(0.031) -0.144(0.025)	-0.103(0.022) -0.103(0.017)	$0.043 (0.027) \\ 0.032 (0.021)$	0.036(0.037) 0.042(0.028)	-0.106(0.043) -0.112(0.036)	9.093
BFA DHS 2010	-0.173(0.015)	-0.142(0.011)	0.002(0.014)	0.004(0.022)	-0.170(0.021)	14,423
BFA DHS 2021	-0.167 (0.017)	-0.123(0.012)	0.038(0.016)	0.054 (0.022)	-0.129(0.024)	13,251 10,500
BOL DHS 1998	-0.028(0.013)	-0.038(0.014) -0.026(0.016)	0.031 (0.014)	0.065(0.022)	0.003(0.021)	12,106
BOL DHS 2003	-0.060(0.013)	-0.055(0.012)	0.024(0.010)	0.055(0.023)	-0.036 (0.016)	19,204
BOL DHS 2008 BBA DHS 1996	-0.069 (0.013) -0.029 (0.018)	-0.066 (0.012) -0.025 (0.016)	$0.004 (0.010) \\ 0.035 (0.014)$	$0.008 (0.022) \\ 0.074 (0.030)$	-0.066 (0.015) 0.006 (0.022)	19,561 13.274
CAF DHS 1994	-0.103 (0.028)	-0.094(0.024)	0.001 (0.014)	0.001 (0.042)	-0.102(0.036)	5,551
CAF DHS 2006	0.009 (0.014)	0.010(0.016)	0.024(0.013)	0.054(0.030)	0.033 (0.019)	11,721
CAF DHS 2010 CAF DHS 2018	-0.009 (0.015)	-0.010 (0.015)	$0.007 (0.013) \\ 0.018 (0.018)$	$0.015 (0.029) \\ 0.030 (0.030)$	-0.002 (0.020) -0.002 (0.027)	$^{11,755}_{8,133}$
CIV DHS 1994	-0.098 (0.038)	-0.065 (0.025)	-0.004 (0.028)	-0.006 (0.041)	-0.101(0.052)	5,935
CIV DHS 1998	-0.103(0.059)	-0.068(0.038)	0.013 (0.043)	0.020 (0.066)	-0.089(0.078)	2,122
CIV DHS 2011 CIV DHS 2021	-0.128(0.022) -0.096(0.015)	-0.099(0.017) -0.083(0.013)	0.035(0.016) 0.016(0.012)	$0.062 (0.031) \\ 0.034 (0.026)$	-0.093(0.028) -0.080(0.020)	9,682 14.766
CMR DHS 1998	-0.077 (0.032)	-0.060(0.024)	0.040(0.025)	0.063(0.042)	-0.037(0.043)	4,693
CMR DHS 2014	-0.047 (0.018) 0.124 (0.021)	-0.047 (0.017) 0.107 (0.016)	0.018 (0.016) 0.024 (0.017)	0.032(0.029)	-0.029(0.024) 0.158(0.027)	10,212
COG DHS 2007 COG DHS 2005	-0.134(0.021) -0.060(0.028)	-0.048(0.022)	0.076(0.017)	0.137 (0.042)	0.015(0.027) 0.015(0.036)	5,879
COG DHS 2014	-0.020(0.014)	-0.023(0.016)	0.007(0.013)	0.014(0.025)	-0.013(0.018)	12,811
COM DHS 1996 COM DHS 2012	-0.143(0.052) -0.027(0.032)	-0.105(0.037) -0.022(0.026)	$0.080 (0.044) \\ 0.083 (0.028)$	$0.101 (0.058) \\ 0.121 (0.043)$	$-0.063 (0.068) \\ 0.056 (0.042)$	2,252 4 481
CUB DHS 2014	0.039(0.014)	0.053 (0.020)	-0.015 (0.012)	-0.030 (0.024)	$0.024 \ (0.017)$	9,494
CUB DHS 2019	-0.028(0.012)	-0.042(0.018)	0.008(0.011)	0.015(0.020)	-0.020 (0.015)	11,966
ETH DHS 2000 ETH DHS 2005	-0.044(0.020) -0.169(0.015)	-0.143(0.018)	0.020(0.017) 0.038(0.013)	0.033(0.029) 0.065(0.024)	-0.025(0.020) -0.131(0.020)	13,705
FJI DHS 2021	-0.017(0.024)	-0.017(0.023)	0.012(0.019)	0.018(0.028)	-0.005 (0.030)	5,467
GAB DHS 2000 GAB DHS 2012	-0.106(0.030) -0.118(0.020)	-0.087 (0.024) -0.116 (0.018)	$0.037 (0.024) \\ 0.037 (0.016)$	$0.056 (0.037) \\ 0.076 (0.035)$	-0.069 (0.040) -0.082 (0.026)	$^{6,203}_{9,750}$
GAB DHS 2012	-0.039(0.017)	-0.039(0.017)	0.032 (0.012)	0.089(0.037)	-0.007 (0.022)	11,781
GEO DHS 2018	-0.004 (0.013)	-0.005 (0.018)	0.010(0.011)	0.015(0.017)	0.006 (0.016)	12,270
GHA DHS 1998 GHA DHS 2006	-0.025(0.021) 0.029(0.024)	$-0.031 (0.026) \\ 0.030 (0.025)$	-0.004(0.019) -0.019(0.021)	-0.010(0.043) -0.033(0.037)	-0.030(0.029) 0.010(0.033)	5,932
GHA DHS 2008	-0.163 (0.015)	-0.166 (0.014)	$0.021 \ (0.013)$	0.048 (0.030)	-0.142 (0.020)	11,778
GHA DHS 2011 GHA DHS 2014	-0.138(0.016) 0.079(0.014)	$-0.151 (0.017) \\ 0.093 (0.016)$	0.000 (0.016) 0.018 (0.012)	0.001 (0.023) 0.042 (0.029)	-0.138(0.023)	11,924 11.834
GHA DHS 2014 GHA DHS 2017	-0.020(0.014)	-0.022(0.017)	$0.018 (0.012) \\ 0.018 (0.014)$	0.042 (0.023) 0.029 (0.022)	-0.001 (0.013)	12,886
GIN DHS 1999	-0.114 (0.036)	-0.080 (0.025)	0.040 (0.028)	0.053 (0.037)	-0.073 (0.049)	5,089
GIN DHS 2005 GIN DHS 2018	-0.086 (0.025) -0.179 (0.023)	-0.074(0.021) -0.143(0.017)	0.029(0.023) -0.003(0.020)	0.039(0.032) -0.005(0.027)	-0.058 (0.036) -0.183 (0.031)	6,280 7 912
GMB DHS 2013	-0.274(0.042)	-0.149 (0.021)	0.012 (0.029)	0.013 (0.031)	-0.262 (0.056)	6,215
GMB DHS 2018	-0.107 (0.036)	-0.070(0.023)	0.046 (0.028)	0.047 (0.030)	-0.061 (0.053)	7,405
GNB DHS 2019 GNB DHS 2014	-0.139(0.041) -0.182(0.031)	-0.080(0.023) -0.116(0.019)	$0.034 (0.031) \\ 0.021 (0.023)$	$0.037 (0.034) \\ 0.024 (0.027)$	-0.105(0.059) -0.162(0.041)	6,601
GNB DHS 2018	-0.159(0.032)	-0.109 (0.021)	0.040(0.024)	0.051(0.031)	-0.119 (0.042)	7,378
GTM DHS 2014 HND DHS 2011	-0.075(0.013) 0.007(0.013)	-0.063(0.011)	-0.007 (0.009) 0.013 (0.010)	-0.012 (0.018) 0.023 (0.018)	-0.081 (0.016)	21,383 21,361
HND DHS 2019	-0.035(0.012)	-0.036(0.011)	0.013(0.010) 0.002(0.009)	0.023(0.013) 0.004(0.017)	-0.033 (0.015)	20,668
HTI DHS 1994	-0.074 (0.032)	-0.063 (0.027)	0.010 (0.023)	0.017(0.041)	-0.064 (0.040)	4,818
HTI DHS 2000 HTI DHS 2005	-0.082 (0.022) -0.162 (0.020)	-0.070 (0.018)	-0.004 (0.016) -0.016 (0.014)	-0.007 (0.028) -0.029 (0.026)	-0.086 (0.027) -0.178 (0.024)	9,588 9,990
HTI DHS 2012	-0.117 (0.019)	-0.095 (0.014)	-0.010 (0.013)	-0.020 (0.024)	-0.127(0.022)	13,176
IND DHS 2005	-0.090 (0.008)	-0.067 (0.006)	0.024 (0.006)	0.039(0.010)	-0.066 (0.010)	109,032
IND DHS 2015 IND DHS 2019	-0.117 (0.004) -0.047 (0.004)	-0.039 (0.003)	0.027 (0.003) 0.017 (0.003)	$0.041 (0.005) \\ 0.029 (0.005)$	-0.031 (0.005)	636.696
KEN DHS 1993	-0.024 (0.015)	-0.034 (0.021)	0.027 (0.023)	0.031 (0.028)	0.002 (0.028)	7,948
KEN DHS 1998 KEN DHS 2002	-0.093 (0.020)	-0.092(0.019)	0.007 (0.017)	0.012 (0.030)	-0.087 (0.026)	8,379
KEN DHS 2008	-0.032(0.019) -0.084(0.018)	-0.088(0.019)	0.022 (0.015)	0.046 (0.031)	-0.020(0.023) -0.062(0.023)	9,056
KEN DHS 2014	-0.091 (0.008)	-0.100 (0.009)	0.011(0.008)	0.020(0.015)	-0.079(0.012)	36,418
KEN DHS 2022 KGZ DHS 2012	-0.061 (0.008) -0.091 (0.018)	-0.068 (0.009) -0.092 (0.017)	$0.012 (0.008) \\ 0.068 (0.015)$	$0.020 (0.014) \\ 0.109 (0.026)$	-0.049 (0.011) -0.023 (0.021)	37,911 8.039
KHM DHS 2010	-0.085 (0.014)	-0.071 (0.012)	0.004 (0.013)	0.006 (0.018)	-0.081 (0.019)	15,667
KHM DHS 2014 KIB DHS 2018	$-0.076 (0.014) \\ 0.020 (0.038)$	$-0.072 (0.013) \\ 0.015 (0.028)$	0.010 (0.013)	0.015 (0.019)	-0.066 (0.018) 0.011 (0.048)	15,825 3.071
1111 LIIU 4010	0.040 (0.000)		0.000 10.0401	0.0111100000000	0.011 (0.010)	

Table A3: Effect of man's questionnaire on number of men in the household

G	Eligib	le men	Ineligi	ble men	Total men	
Survey	Absolute	Relative	Absolute	Relative	Absolute	Ń
LAO DHS 2017	-0.052(0.011)	-0.044(0.009)	0.017(0.009)	0.026(0.015)	-0.036(0.014)	22,287
LBR DHS 2013	-0.144 (0.019)	-0.135 (0.017)	-0.045 (0.018)	-0.062(0.024)	-0.190 (0.026)	9,332
LBR DHS 2019	-0.060(0.019)	-0.056(0.018)	0.019(0.017)	0.033(0.030)	-0.041 (0.026)	9,068
LSO DHS 2004 LSO DHS 2009	-0.160(0.019) -0.169(0.017)	-0.168(0.019) -0.190(0.018)	$0.111 (0.021) \\ 0.186 (0.021)$	$0.135 (0.027) \\ 0.215 (0.027)$	-0.049 (0.028) 0.017 (0.026)	8,586
LSO DHS 2003 LSO DHS 2014	-0.180(0.017)	-0.212(0.018)	0.130(0.021) 0.137(0.019)	0.213(0.027) 0.177(0.027)	-0.042(0.024)	9,402
LSO DHS 2018	-0.003 (0.020)	-0.003 (0.020)	0.005 (0.014)	0.011(0.029)	0.002 (0.025)	8,847
MDA DHS 2005	-0.067 (0.015)	-0.078 (0.018)	0.030(0.011)	0.086(0.033)	-0.037 (0.017)	11,076
MDA DHS 2012	-0.036(0.014)	-0.062(0.023)	0.024 (0.011)	0.053 (0.024)	-0.012(0.015)	11,353
MDG DHS 2003 MDG DHS 2008	-0.160(0.021) -0.095(0.013)	-0.142(0.017) -0.084(0.011)	$0.081 (0.017) \\ 0.039 (0.011)$	0.174(0.039) 0.076(0.023)	-0.078(0.027) -0.056(0.017)	8,406 17 847
MLI DHS 1995	-0.158(0.022)	-0.139(0.011)	0.042 (0.020)	0.063 (0.031)	-0.116(0.030)	8,716
MLI DHS 2001	-0.065 (0.018)	-0.061 (0.017)	0.038~(0.016)	0.061 (0.026)	-0.026 (0.024)	12,320
MLI DHS 2006	-0.099 (0.018)	-0.084 (0.015)	0.076(0.015)	0.126(0.027)	-0.023 (0.025)	12,959
MLI DHS 2012 MLI DHS 2015	-0.198(0.017) 0.177(0.025)	-0.175(0.014) 0.109(0.014)	0.091 (0.018) 0.091 (0.021)	0.126 (0.027) 0.081 (0.019)	-0.108(0.025) 0.087(0.036)	10,105
MLI DHS 2018	-0.170(0.023)	-0.144(0.014)	$0.031 (0.021) \\ 0.024 (0.018)$	0.035(0.027)	-0.146(0.027)	9.510
MMR DHS 2015	-0.081 (0.015)	-0.089 (0.015)	0.001 (0.014)	0.001 (0.018)	-0.080 (0.019)	12,500
MNG DHS 2013	-0.061 (0.012)	-0.067(0.012)	-0.012(0.009)	-0.027 (0.022)	-0.072(0.013)	14,805
MNG DHS 2018 MOZ DHS 1007	-0.004 (0.012)	-0.004 (0.014)	-0.011(0.010)	-0.023(0.021)	-0.015(0.014)	13,798
MOZ DHS 1997 MOZ DHS 2003	-0.011 (0.019) -0.035 (0.019)	-0.011(0.019) -0.032(0.017)	$0.027 (0.018) \\ 0.060 (0.015)$	$0.045 (0.030) \\ 0.113 (0.030)$	$0.017 (0.026) \\ 0.024 (0.024)$	9,279
MRT DHS 2007	-0.045(0.020)	-0.041 (0.018)	0.000(0.010) 0.001(0.017)	0.001 (0.023)	-0.045(0.027)	10,359
MRT DHS 2015	-0.062 (0.018)	-0.061 (0.017)	0.029(0.016)	0.041(0.022)	-0.032 (0.025)	11,764
MWI DHS 1992	0.003 (0.020)	0.004 (0.026)	0.033(0.030)	0.040(0.037)	0.036(0.035)	5,323
MWI DHS 2000	-0.038(0.016) 0.102(0.014)	-0.039(0.016) 0.100(0.015)	0.036 (0.014)	0.075 (0.029) 0.025 (0.026)	-0.001 (0.021)	14,210
MWI DHS 2004	-0.038 (0.009)	-0.043 (0.013)	0.013(0.009)	0.027 (0.018)	-0.025 (0.013)	30,542
MWI DHS 2010	-0.062(0.011)	-0.064 (0.011)	0.043(0.010)	0.077(0.019)	-0.019(0.015)	24,819
MWI DHS 2013	-0.066(0.010)	-0.069(0.011)	0.039(0.010)	0.073(0.018)	-0.026(0.014)	26,713
MWI DHS 2015	-0.086 (0.011)	-0.087 (0.011)	-0.012 (0.010)	-0.022 (0.017)	-0.098 (0.014)	26,361
NAM DHS 2019	$-0.047 (0.011) \\ 0.012 (0.027)$	-0.050(0.011) 0.011(0.024)	-0.000(0.010) 0.035(0.019)	-0.000(0.018) 0.067(0.038)	$-0.048 (0.014) \\ 0.047 (0.033)$	25,419
NAM DHS 2006	-0.076(0.022)	-0.073(0.020)	-0.001 (0.016)	-0.002 (0.027)	-0.077(0.028)	9,187
NAM DHS 2013	-0.040 (0.020)	-0.036 (0.018)	0.000(0.013)	0.000(0.034)	-0.040 (0.024)	9,842
NER DHS 1998	-0.102(0.027)	-0.084 (0.021)	0.033(0.025)	0.047 (0.036)	-0.069(0.039)	5,927
NER DHS 2006 NEB DHS 2012	-0.158(0.024) -0.173(0.017)	-0.136(0.019) -0.167(0.015)	0.050 (0.021) 0.047 (0.018)	0.069 (0.030) 0.064 (0.025)	-0.108 (0.033)	7,654 10.747
NGA DHS 2003	-0.110(0.026)	-0.091(0.021)	0.033(0.020)	0.063 (0.039)	-0.077(0.034)	7,212
NGA DHS 2008	-0.085 (0.009)	-0.078 (0.008)	0.033 (0.008)	0.073(0.018)	-0.053 (0.013)	34,023
NGA DHS 2013	-0.008 (0.008)	-0.009 (0.009)	0.004(0.008)	0.006 (0.014)	-0.004(0.012)	38,508
NGA DHS 2018 NIC DHS 1008	-0.064 (0.009) 0.075 (0.022)	-0.061 (0.009) 0.057 (0.017)	0.061 (0.008) 0.022 (0.018)	0.134(0.017) 0.034(0.028)	-0.003 (0.012) 0.053 (0.029)	40,427 11 523
NPL DHS 2006	-0.045(0.022)	-0.041(0.017)	0.022(0.013) 0.007(0.016)	0.034(0.023) 0.011(0.027)	-0.038(0.025)	8,707
NPL DHS 2011	-0.064(0.017)	-0.061 (0.016)	-0.038(0.014)	-0.064(0.023)	-0.102(0.021)	10,826
NPL DHS 2016	-0.079 (0.016)	-0.093 (0.018)	-0.036 (0.014)	-0.048 (0.018)	-0.115 (0.021)	11,040
NPL DHS 2019 DED DHS 1006	0.004 (0.014)	0.004 (0.016) 0.026 (0.017)	0.019 (0.012) 0.020 (0.016)	0.030 (0.019) 0.051 (0.027)	0.023 (0.018)	12,653
PHL DHS 2003	-0.044(0.021) -0.055(0.018)	-0.044(0.017)	0.030(0.010) 0.013(0.015)	$0.031 (0.021) \\ 0.021 (0.024)$	-0.014(0.023) -0.042(0.023)	12.585
PNG DHS 2016	-0.080 (0.016)	-0.065 (0.013)	0.030(0.013)	0.042(0.019)	-0.049 (0.020)	16,001
RWA DHS 2000	-0.082(0.019)	-0.082(0.018)	$0.010 \ (0.015)$	$0.021 \ (0.032)$	-0.072(0.024)	9,684
RWA DHS 2005	-0.071 (0.017)	-0.068 (0.016)	-0.015(0.013)	-0.035(0.029)	-0.086(0.021)	10,270 12,522
SEN DHS 2005	-0.128(0.013)	-0.067(0.013)	-0.039(0.011) 0.003(0.031)	-0.092(0.023) 0.002(0.030)	-0.125 (0.019)	7 411
SEN DHS 2010	-0.058 (0.039)	-0.030 (0.020)	0.083 (0.026)	0.082(0.026)	0.025 (0.051)	7,902
SEN DHS 2014	-0.168(0.050)	-0.087(0.025)	0.026(0.033)	0.026(0.034)	-0.142 (0.066)	4,231
SEN DHS 2015	-0.060 (0.048) 0.153 (0.046)	-0.032(0.025)	0.078(0.031)	0.088 (0.037)	0.018 (0.063) 0.147 (0.062)	4,511
SLE DHS 2008	-0.291(0.040)	-0.082(0.023) -0.230(0.016)	0.162(0.031)	0.230(0.033)	-0.147 (0.002) -0.129 (0.031)	4,437 7,284
SLE DHS 2013	-0.129 (0.018)	-0.097 (0.013)	0.052(0.014)	0.087 (0.025)	-0.077 (0.023)	12,620
SLE DHS 2017	$0.004 \ (0.015)$	$0.004 \ (0.015)$	0.004(0.012)	0.008(0.021)	0.008 (0.019)	15,308
SLE DHS 2019	-0.150(0.017)	-0.119(0.013)	0.058 (0.014)	0.099 (0.025)	-0.091 (0.023)	13,399
TCA DHS 2018	-0.021(0.021)	-0.021(0.021)	0.019(0.015) 0.007(0.031)	$0.033 (0.027) \\ 0.016 (0.073)$	0.039(0.025) 0.004(0.041)	1,914
TCD DHS 1996	0.001 (0.028)	0.001 (0.025)	0.027 (0.022)	0.045(0.038)	0.028(0.037)	6,835
TCD DHS 2004	-0.017(0.032)	-0.015(0.028)	$0.031 \ (0.025)$	$0.052 \ (0.042)$	$0.014 \ (0.042)$	5,367
TCD DHS 2019	0.007 (0.014)	0.006 (0.014)	-0.025 (0.013)	-0.036 (0.019)	-0.018 (0.020)	18,967
TGO DHS 1998	-0.160 (0.024) 0.007 (0.025)	$-0.145 (0.018) \\ 0.007 (0.024)$	0.020 (0.021) 0.059 (0.022)	0.028 (0.030)	-0.100 (0.035) 0.067 (0.034)	6 029
TGO DHS 2013	-0.098 (0.019)	-0.090 (0.016)	0.043 (0.016)	0.083 (0.032)	-0.055 (0.025)	9,548
THA DHS 2019	-0.009 (0.007)	-0.013 (0.011)	0.017(0.007)	0.026(0.011)	0.008(0.009)	35,569
THA DHS 2022	-0.013 (0.008)	-0.019 (0.012)	0.006 (0.007)	0.009(0.012)	-0.007 (0.010)	29,949
TON DHS 2009	-0.074 (0.019) -0.007 (0.041)	-0.060 (0.015)	-0.001(0.017)	-0.001 (0.020)	-0.073 (0.025) -0.018 (0.051)	2 498
TUN DHS 2018	0.004 (0.018)	0.004 (0.000)	0.006 (0.014)	0.009(0.021)	0.009 (0.022)	11,224
TUV DHS 2019	-0.238 (0.099)	-0.156 (0.062)	0.005 (0.068)	0.006~(0.076)	-0.233 (0.127)	694
TZA DHS 1991	-0.026 (0.026)	-0.023 (0.022)	0.055(0.022)	0.083(0.034)	0.028 (0.035)	8,326
TZA DHS 1996 TZA DHS 2004	-0.074 (0.022)	-0.071(0.021)	0.087 (0.019)	$0.145 (0.034) \\ 0.038 (0.026)$	0.013 (0.029) 0.018 (0.027)	7,967
TZA DHS 2010	-0.065(0.019)	-0.067(0.020)	0.047 (0.019)	0.063(0.020)	-0.019(0.027)	9,623
TZA DHS 2015	0.002(0.017)	0.002(0.018)	0.032(0.016)	0.045(0.023)	0.034(0.024)	12,563

Table A3: Effect of man's questionnaire on number of men in the household

Table A3: Effect of man's questionnaire on number of men in the household

	Eligib	le men	Ineligit	ole men	Total men	
Survey	Absolute	Relative	Absolute	Relative	Absolute	Ν
TZA DHS 2022	-0.074 (0.014)	-0.084(0.015)	0.022(0.013)	0.032(0.019)	-0.052 (0.019)	15,705
UGA DHS 1995	-0.069 (0.020)	-0.073(0.021)	0.077(0.019)	0.151(0.040)	0.008(0.027)	7,549
UGA DHS 2000	-0.041 (0.019)	-0.045 (0.021)	0.034(0.020)	0.060 (0.036)	-0.006 (0.028)	7,876
UGA DHS 2006	-0.022(0.019)	-0.023(0.020)	-0.010(0.018)	-0.016(0.029)	-0.032(0.026)	8,870
UGA DHS 2011	-0.112(0.019)	-0.111 (0.019)	0.027(0.018)	0.048(0.032)	-0.085 (0.026)	9,033
UGA DHS 2016	-0.064(0.013)	-0.068(0.013)	-0.033(0.011)	-0.060(0.021)	-0.097(0.017)	19,588
UKR DHS 2007	-0.061(0.012)	-0.104(0.019)	0.026(0.010)	0.054(0.021)	-0.035(0.014)	13,368
UZB DHS 2002	-0.146(0.036)	-0.095(0.023)	0.057(0.028)	0.083(0.042)	-0.089(0.043)	3,363
VNM DHS 2020	-0.028(0.012)	-0.033(0.014)	0.010(0.010)	0.018(0.019)	-0.018(0.014)	13,359
WSM DHS 2019	-0.040(0.046)	-0.027(0.031)	0.040(0.034)	0.043(0.036)	0.001 (0.059)	3,196
XKX DHS 2013	-0.020(0.032)	-0.014(0.022)	0.035(0.022)	0.042 (0.027)	0.014 (0.039)	4,127
XKX DHS 2019	-0.012(0.026)	-0.009(0.020)	0.010(0.018)	0.013(0.023)	-0.002(0.031)	5,124
ZAF DHS 2016	-0.023 (0.016)	-0.024(0.018)	-0.004 (0.011)	-0.012(0.032)	-0.027 (0.020)	11,079
ZMB DHS 1996	-0.057(0.026)	-0.049(0.022)	0.082(0.023)	0.130(0.037)	0.025 (0.035)	7,286
ZMB DHS 2001	-0.156(0.023)	-0.133(0.019)	0.047 (0.021)	0.079 (0.035)	-0.109(0.031)	7,123
ZWE DHS 1994	-0.052(0.024)	-0.050(0.023)	-0.012(0.022)	-0.018(0.033)	-0.064(0.033)	5,983
ZWE DHS 1999	-0.063(0.022)	-0.063(0.021)	0.024(0.020)	0.042 (0.035)	-0.039(0.029)	6,369
ZWE DHS 2014	-0.057(0.013)	-0.063(0.014)	-0.002(0.011)	-0.005(0.024)	-0.060(0.017)	$15,\!686$
ZWE DHS 2019	-0.030 (0.015)	-0.034 (0.017)	0.027(0.013)	0.061(0.029)	-0.003 (0.019)	11,091

Notes: Relative regression coefficients are computed as absolute regression coefficients over the control mean. Standard errors are displayed in parentheses.

Table A4: Effect of woman's questionnaire on number of women in the household

Survey	Absolute	Relative	Ν
GAB DHS 2019	-0.021 (0.008)	-0.091 (0.034)	$11,781 \\ 11,778 \\ 9,849$
GHA DHS 2008	-0.121 (0.016)	-0.121 (0.015)	
NAM DHS 2013	-0.003 (0.008)	-0.015 (0.042)	

Notes: Relative regression coefficients are computed as absolute regression coefficients over the control mean. Standard errors are displayed in parentheses.

m 11 /	1 1	D 1	• •	
Table /	<u>+5:</u>	Bounds	missing	women
100010 1		Douroro		

Survey	Eligible women Absolute	Ineligible women Absolute	Lower bound Relative	Upper bound Relative	Ν
BEN DHS 2001	-0.155(0.014)	0.026(0.012)	-0.069 (0.006)	-0.069 (0.006)	123,950
BEN DHS 2011	-0.279 (0.008)	0.074(0.007)	-0.136(0.004)	-0.136 (0.004)	194,670
BEN MICS 2014	-0.179 (0.010)	0.041(0.009)	-0.083 (0.005)	-0.083 (0.005)	192,364
BFA MICS 2006	0.037 (0.020)	0.293(0.020)	-0.091(0.009)	-0.091(0.009)	240,602
BOL DHS 1994	-0.030 (0.009)	0.065(0.008)	-0.044 (0.006)	-0.044(0.006)	150,516
BOL DHS 2003	-0.022(0.008)	0.045(0.006)	-0.032(0.005)	-0.032(0.005)	212,911
CMR DHS 2004	-0.114(0.011)	0.069(0.009)	-0.075(0.005)	-0.075(0.005)	345,535
CMR MICS 2006	-0.243(0.012)	0.047(0.010)	-0.115(0.006)	-0.115(0.006)	346,001
CRI MICS 2011	0.021 (0.019)	0.055(0.013)	-0.017(0.013)	-0.017(0.013)	126,620
CUB MICS 2010	0.015(0.013)	0.071(0.010)	-0.038(0.012)	-0.038(0.012)	376,454
CUB MICS 2014	-0.034(0.013)	0.089(0.010)	-0.082(0.012)	-0.082(0.012)	376,712
DOM MICS 2000	-0.049(0.016)	0.022(0.010)	-0.030(0.008)	-0.030(0.008)	204,663
GHA DHS 1998	-0.391(0.011)	-0.089 (0.010)	-0.123(0.006)	-0.123(0.006)	371,542
GHA DHS 2008	-0.275(0.012)	-0.003(0.010)	-0.119(0.007)	-0.119(0.007)	545,826
IDN MICS 2000	0.003 (0.008)	0.062(0.007)	-0.027(0.005)	-0.027(0.005)	5,062,004
KEN DHS 1989	-0.126(0.013)	0.193(0.012)	-0.145(0.008)	-0.145(0.008)	222,621
KEN DHS 1998	-0.112(0.010)	0.101 (0.009)	-0.097(0.006)	-0.097(0.006)	319,701
KEN DHS 2008	-0.063(0.012)	0.067(0.011)	-0.061(0.007)	-0.061(0.007)	892,539
KHM DHS 2000	-0.014(0.008)	0.061 (0.008)	-0.029(0.004)	-0.029(0.004)	227,777
KHM DHS 2010	-0.077(0.008)	0.030(0.007)	-0.042(0.004)	-0.042(0.004)	295,935
KHM DHS 2014	-0.112(0.010)	0.041 (0.009)	-0.062(0.006)	-0.062(0.006)	44,172
KHM DHS 2021	-0.183(0.007)	0.042(0.006)	-0.097(0.004)	-0.097(0.004)	373,281
LAO MICS 2006	-0.127(0.012)	0.049(0.011)	-0.061(0.006)	-0.061(0.006)	100,760
LAO MICS 2017	-0.278(0.007)	0.014(0.006)	-0.101(0.003)	-0.101(0.003)	140,210
LBR DHS 2007	-0.156(0.015)	0.063(0.012)	-0.085(0.007)	-0.085(0.007)	73,260
LBR DHS 2009	-0.125(0.019)	0.102(0.016)	-0.088(0.009)	-0.088(0.009)	70,625
LSO DHS 2004	-0.200 (0.011)	0.090(0.010)	-0.135(0.007)	-0.135(0.007)	49,099
MEX MICS 2015	-0.030(0.016)	0.029(0.012)	-0.028 (0.011)	-0.028(0.011)	2,849,555
MMR DHS 2015	-0.133(0.009)	0.054(0.007)	-0.076(0.005)	-0.076(0.005)	1,092,036
MNG MICS 2010	-0.071 (0.009)	$0.044 \ (0.007)$	-0.054(0.006)	-0.054 (0.006)	77,675
MOZ DHS 1997	-0.018(0.019)	0.134(0.014)	-0.072(0.010)	-0.072(0.010)	366,810
MOZ MICS 2008	-0.006(0.008)	0.095(0.008)	-0.049(0.006)	-0.049(0.006)	469,429
MOZ DHS 2009	-0.100 (0.010)	0.044(0.010)	-0.061(0.006)	-0.061(0.006)	459,990
MWI DHS 1996	-0.110(0.017)	0.092(0.018)	-0.095(0.012)	-0.095(0.012)	227,107
MWI DHS 2000	-0.103(0.007)	0.084(0.007)	-0.089(0.005)	-0.089(0.005)	238,355
MWI MICS 2006	-0.160(0.005)	0.067 (0.006)	-0.107(0.004)	-0.107(0.004)	311,089
MWI DHS 2010	-0.073(0.006)	0.087 (0.006)	-0.076(0.004)	-0.076(0.004)	305,814
NER DHS 2012	-0.375(0.011)	0.000(0.012)	-0.129(0.005)	-0.129(0.005)	34,672
PER DHS 1991	0.116(0.009)	0.101 (0.007)	0.006 (0.005)	$0.006 \ (0.005)$	483,608
PER DHS 2007	-0.096 (0.006)	0.073(0.004)	-0.077(0.003)	-0.077(0.003)	706,727
PER DHS 2009	-0.104 (0.007)	0.047 (0.005)	-0.069(0.004)	-0.069(0.004)	688,434
PRY DHS 1990	0.015 (0.013)	0.057(0.011)	-0.019(0.007)	-0.019(0.007)	90,914
RWA DHS 1992	0.050 (0.011)	0.060 (0.010)	-0.005(0.007)	-0.005(0.007)	154,753
RWA DHS 2000	-0.101(0.009)	0.096(0.009)	-0.084(0.005)	-0.084 (0.005)	182,820
RWA MICS 2000	$0.040 \ (0.014)$	0.085(0.013)	-0.019(0.008)	-0.019(0.008)	178,295
SEN DHS 2012	$0.112 \ (0.037)$	0.195(0.024)	-0.021(0.008)	-0.021 (0.008)	148, 146
SEN DHS 2014	$0.089 \ (0.039)$	0.200(0.024)	-0.028(0.009)	-0.028(0.009)	148,204
SEN DHS 2015	-0.024 (0.033)	0.189(0.021)	-0.054(0.008)	-0.054 (0.008)	$148,\!480$
SLE DHS 2013	-0.107(0.011)	0.136(0.009)	-0.083(0.005)	-0.083 (0.005)	138,518
SLE DHS 2016	-0.166 (0.015)	0.173(0.013)	-0.116(0.006)	-0.116(0.006)	132,633
TGO MICS 2010	-0.069(0.014)	0.077(0.012)	-0.061 (0.007)	-0.061 (0.007)	125,393
TTO MICS 2011	-0.085(0.014)	0.042(0.009)	-0.070(0.009)	-0.070 (0.009)	37,230
TZA DHS 2003	0.006 (0.012)	0.061 (0.010)	-0.025(0.007)	-0.025 (0.007)	816,339
TZA DHS 2004	-0.017 (0.011)	0.039(0.009)	-0.025(0.006)	-0.025 (0.006)	819,515
TZA DHS 2010	-0.106(0.011)	0.107 (0.010)	-0.090(0.006)	-0.090 (0.006)	948,780
TZA DHS 2011	-0.028 (0.012)	0.118(0.010)	-0.061 (0.006)	-0.061 (0.006)	949,188
UGA DHS 2000	-0.095(0.010)	0.046(0.011)	-0.066(0.007)	-0.066(0.007)	514,392
UGA DHS 2014	-0.033(0.013)	0.083(0.012)	-0.054 (0.008)	-0.054 (0.008)	716,416
UGA DHS 2016	-0.073(0.007)	0.034(0.006)	-0.050(0.004)	-0.050(0.004)	730,357
URY MICS 2012	$0.057 \ (0.039)$	0.083 (0.030)	-0.018(0.033)	-0.018(0.033)	109,594
VEN MICS 2000	0.038 (0.016)	0.070(0.012)	-0.013(0.009)	-0.013(0.009)	525,265
VNM MICS 2010	-0.085(0.008)	0.068(0.006)	-0.069(0.005)	-0.069(0.005)	3,624,796
VNM MICS 2020	-0.074(0.007)	$0.036\ (0.007)$	-0.060(0.006)	-0.060 (0.006)	2,269,333
ZAF DHS 2016	0.028(0.011)	$0.046\ (0.008)$	-0.010(0.007)	-0.010(0.007)	979,636
ZMB DHS 1992	-0.174(0.013)	0.016(0.011)	-0.068(0.006)	-0.068(0.006)	$133,\!677$
ZMB DHS 2001	-0.046(0.011)	0.061 (0.009)	-0.045(0.006)	-0.045(0.006)	188,640

Notes: Standard errors are displayed in parentheses.

Table A6: Bounds missing men

Survey	Eligible men Absolute	Ineligible men Absolute	Lower bound Relative	Upper bound Relative	Ν
BEN DHS 2001 BEN DHS 2011	-0.223 (0.017) -0.294 (0.012)	$\begin{array}{c} 0.068 \ (0.015) \\ 0.064 \ (0.010) \end{array}$	-0.117 (0.009) -0.142 (0.006)	-0.117 (0.009) -0.142 (0.006)	$121,150 \\ 183,196$

Survey	Eligible men Absolute	Ineligible men Absolute	Lower bound Relative	Upper bound Relative	Ν
BEN MICS 2014	-0.212 (0.016)	0.033 (0.015)	-0.104 (0.009)	-0 104 (0 009)	183.064
BOL DHS 2003	-0.212(0.010) -0.059(0.012)	0.040(0.019)	-0.104(0.003)	-0.104(0.003)	200.818
CUB MICS 2014	-0.065(0.012)	0.043(0.014)	-0.072(0.017)	-0.072(0.017)	372.267
GHA DHS 1998	-0.482(0.018)	-0.103 (0.014)	-0.147(0.009)	-0.147(0.009)	367.671
GHA DHS 2008	-0.356(0.011)	-0.007(0.009)	-0.150(0.006)	-0.150 (0.006)	545,826
KEN DHS 1998	-0.162(0.015)	0.066(0.013)	-0.105 (0.009)	-0.105 (0.009)	315,578
KEN DHS 2008	-0.150(0.017)	0.027(0.014)	-0.083 (0.010)	-0.083 (0.010)	888,067
KHM DHS 2010	-0.125 (0.012)	-0.001 (0.009)	-0.051 (0.006)	-0.051 (0.006)	288,141
KHM DHS 2014	-0.170 (0.016)	0.012(0.012)	-0.079 (0.009)	-0.079 (0.009)	33,982
LAO MICS 2017	-0.246 (0.010)	0.003(0.008)	-0.090 (0.005)	-0.090 (0.005)	129,100
LSO DHS 2004	-0.242(0.016)	0.073(0.012)	-0.151(0.009)	-0.151(0.009)	44,809
MMR DHS 2015	-0.222(0.012)	0.031(0.010)	-0.117(0.007)	-0.117(0.007)	1,085,881
MOZ DHS 1997	-0.017(0.027)	0.099(0.023)	-0.059(0.019)	-0.059(0.019)	360,639
MWI DHS 2000	-0.105(0.017)	0.052(0.014)	-0.075(0.011)	-0.075(0.011)	227,898
MWI MICS 2006	-0.147(0.010)	0.020 (0.010)	-0.083(0.007)	-0.083(0.007)	290,859
MWI DHS 2010	-0.093(0.011)	0.087 (0.010)	-0.088(0.007)	-0.088(0.007)	289,819
NER DHS 2012	-0.610(0.015)	0.069 (0.015)	-0.242(0.007)	-0.242(0.007)	29,101
RWA DHS 2000	-0.135(0.015)	0.092 (0.013)	-0.112(0.010)	-0.112(0.010)	176,276
SEN DHS 2014	-0.226 (0.055)	0.053 (0.026)	-0.070(0.014)	-0.070(0.014)	146, 117
SEN DHS 2015	-0.227(0.042)	0.083 (0.025)	-0.078(0.011)	-0.078(0.011)	146,223
SLE DHS 2013	-0.283(0.016)	0.127 (0.012)	-0.139(0.007)	-0.139(0.007)	132,227
TGO MICS 2010	-0.032(0.025)	0.059 (0.018)	-0.038(0.012)	-0.038 (0.012)	121,355
TZA DHS 2004	-0.053(0.019)	0.035 (0.017)	-0.044 (0.012)	-0.044 (0.012)	812,977
TZA DHS 2010	-0.103(0.020)	0.058 (0.018)	-0.078(0.012)	-0.078(0.012)	942,302
UGA DHS 2000	-0.129(0.017)	0.039(0.017)	-0.083(0.012)	-0.083(0.012)	509,239
UGA DHS 2016	-0.090(0.012)	0.009(0.010)	-0.050(0.008)	-0.050(0.008)	717,523
VNM MICS 2020	-0.134(0.010)	$0.030 \ (0.009)$	-0.089(0.008)	-0.089(0.008)	2,262,794
ZAF DHS 2016	-0.071(0.015)	0.037 (0.009)	-0.053(0.008)	-0.053(0.008)	974, 195
ZMB DHS 2001	-0.146(0.020)	0.069 (0.016)	-0.089(0.010)	-0.089(0.010)	183,946

Table A6: Bounds missing men

Notes: Standard errors are displayed in parentheses.

	Survey	Age	Degrees of separation from household head	Years of schooling	Ever married	Number of biological children in household	N
ALB DHS 2017 0.007 0.003 0.001 0.006 0.004 0.001 0.005 0.004 0.005 0.004 0.005	ALB DHS 2008	0.011 (0.008)	-0.005 (0.013)	0.001 (0.007)	0.009 (0.022)	0.037 (0.037)	6,532
Area Ints sum 0.016 (0.006) 0.016 (0.007) 0.016 (0.007) 0.016 (0.007) 0.016 (0.007) 0.016 (0.007) 0.017 (0.007) 0.016 (0.007) 0.017 (0.012) 0.016 (0.015) 0.016 (0.015) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016) 0.016 (0.017) <td>ALB DHS 2017</td> <td>0.007(0.005)</td> <td>-0.003 (0.009)</td> <td>-0.001 (0.006)</td> <td>0.008 (0.011)</td> <td>-0.027 (0.032)</td> <td>14,980</td>	ALB DHS 2017	0.007(0.005)	-0.003 (0.009)	-0.001 (0.006)	0.008 (0.011)	-0.027 (0.032)	14,980
ARM DHS 2010 -0.011 (0.009) -0.013 (0.014) -0.008 (0.009) -0.021 (0.023) 0.016 (0.039) 5.786 ARM DHS 2010 -0.011 (0.007) -0.017 (0.013) -0.021 (0.007) -0.021 (0.021) -0.010 (0.007) -0.021 (0.021) -0.010 (0.007) -0.021 (0.021) -0.010 (0.007) -0.021 (0.013) 0.033 (0.016) -0.034 (0.021) -0.011 (0.023) -0.011 (0.021) -0.	ARM DHS 2000 ABM DHS 2005	$0.004 (0.007) \\ 0.011 (0.009)$	-0.002 (0.013) -0.013 (0.013)	$0.016 (0.006) \\ 0.012 (0.010)$		$0.041 (0.040) \\ 0.035 (0.046)$	5,961 5 493
AREA DIIS 2015 0.004 (0.007) 0.020 (0.012) 0.010 (0.008) 0.011 (0.023) 0.016 (0.038) 8.481 BED DIIS 2016 0.011 (0.005) 0.008 (0.016) 0.004 (0.015) 0.035 (0.026) 8.481 BED DIIS 2016 0.031 (0.005) 0.008 (0.016) 0.032 (0.014) 0.035 (0.023) 4.339 BEN DIIS 2016 0.031 (0.009) -0.032 (0.029) 0.015 (0.026) 0.012 (0.021) 18.559 BEN DIIS 2014 0.012 (0.021) 0.032 (0.015) 0.076 (0.013) 0.102 (0.021) 18.559 BEN DIIS 2014 0.012 (0.007) -0.022 (0.020) 0.030 (0.014) 0.047 (0.024) 0.013 (0.008) 0.131 (0.028) 0.132 (0.021) 18.559 BEN DIIS 2014 0.012 (0.007) -0.002 (0.027) 0.011 (0.014) 0.047 (0.024) 0.032 (0.022) 12.256 BEN DIIS 2014 0.012 (0.007) -0.003 (0.018) 0.014 (0.021) 0.007 (0.014) 0.028 (0.027) 13.221 BEN DIIS 2014 0.012 (0.023) 0.026 (0.014) 0.038 (0.039) 12.256 13.256 BEN DIIS 2014 0.026 (0.016) <t< td=""><td>ARM DHS 2000</td><td>-0.011 (0.008)</td><td>0.013(0.014)</td><td>0.008 (0.006)</td><td>-0.021(0.025)</td><td>0.025 (0.050)</td><td>5,224</td></t<>	ARM DHS 2000	-0.011 (0.008)	0.013(0.014)	0.008 (0.006)	-0.021(0.025)	0.025 (0.050)	5,224
Abd Dirts Dune Dune <thdune< th=""> Dune Dune <thd< td=""><td>ARM DHS 2015</td><td>0.004 (0.007)</td><td>0.020(0.012)</td><td>-0.010 (0.006)</td><td>0.011(0.023)</td><td>0.016(0.039)</td><td>5,786</td></thd<></thdune<>	ARM DHS 2015	0.004 (0.007)	0.020(0.012)	-0.010 (0.006)	0.011(0.023)	0.016(0.039)	5,786
$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	AZE DHS 2006 BDI DHS 2010	$0.001 (0.007) \\ 0.014 (0.007)$	$-0.017 (0.013) \\ 0.000 (0.020)$	$0.008 (0.005) \\ 0.015 (0.018)$	$0.018 (0.016) \\ 0.020 (0.018)$	0.060 (0.028)	8,641 9 301
BEN DHS 1996 0.002 (0.010) 0.025 (0.041) 0.051 (0.038) 4.339 BEN DHS 2001 0.013 (0.050) 0.019 (0.019) 0.016 (0.012) 0.107 (0.013) 0.101 (0.038) 4.339 BEN DHS 2001 0.014 (0.050) 0.019 (0.019) 0.016 (0.014) 0.077 (0.013) 0.101 (0.012) 0.107 (0.032) 0.107 (0.032) 0.107 (0.032) 0.116 (0.071) 1.8,69 BEN DHS 2014 0.012 (0.010) 0.010 (0.027) 0.001 (0.014) 0.047 (0.024) 0.007 (0.032) 1.4,559 BFA DHS 2004 0.023 (0.066) -0.030 (0.018) 0.014 (0.021) 0.077 (0.014) 0.120 (0.022) 1.2,285 BGD DHS 2004 0.038 (0.066) 0.030 (0.018) 0.017 (0.013) 0.017 (0.013) 0.017 (0.013) 0.017 (0.013) 0.017 (0.013) 0.017 (0.013) 0.017 (0.013) 0.012 (0.022) 0.023 (0.023) 0.23 (0.223 (0.023) 0.23 (0.23 (0.23 (0.023)) 0.023 (0.023) 0.23 (0.23 (0.23 (0.24 (0.	BDI DHS 2016	0.014(0.007) 0.015(0.005)	-0.008 (0.016)	-0.004 (0.012)	0.042(0.014)	0.055 (0.021)	16,360
$ \begin{array}{c} \text{Hex} \text{Pirs} \ 3011 & 0.013 \ (0.049) & -0.033 \ (0.029) & -0.013 \ (0.029) & 0.077 \ (0.013) & 0.016 \ (0.023) & 0.15 \ (0.023) & 0.15 \ (0.023) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.012) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.013) & 0.077 \ (0.012) & 0.077 \ (0.012) & 0.077 \ (0.012) $	BEN DHS 1996	0.002(0.010)	-0.025(0.041)	0.021(0.041)		0.051 (0.038)	4,339
$ \begin{array}{c} \mbox{Tex} \ Disp 2011 \\ \mbox{Tex} \ $	BEN DHS 2001 BEN DHS 2006	$0.013 (0.009) \\ 0.014 (0.005)$	-0.032(0.029) 0.019(0.019)	-0.015(0.026) 0.016(0.015)	0.076(0.013)	$0.121 (0.039) \\ 0.102 (0.021)$	6,116 18.659
BEN DHS 2014 0.012 (0.006) -0.042 (0.014) 0.047 (0.021) 1.559 BFA DHS 198 0.030 (0.007) -0.022 (0.020) 0.088 (0.032) 0.047 (0.022) 1.510 BFA DHS 2003 0.021 (0.007) -0.022 (0.020) 0.088 (0.032) 0.047 (0.022) 1.510 BFA DHS 2011 0.030 (0.005) -0.021 (0.015) 0.037 (0.013) 0.049 (0.022) 1.510 BGD DHS 2004 0.016 (0.005) -0.020 (0.015) 0.036 (0.006) 0.023 (0.023) 0.542 12,758 BGL DHS 2008 0.006 (0.005) 0.024 (0.016) -0.008 (0.006) 0.023 (0.023) 0.542 12,758 BGL DHS 2008 0.006 (0.006) 0.008 (0.022) 0.024 (0.023) 0.542 0.014 (0.023) 0.542 CAF DHS 2010 0.010 (0.006) -0.004 (0.022) 0.022 (0.123) 0.113 (0.035 (1.1,75 1.1,025 CAF DHS 2010 0.010 (0.007) 0.022 (0.012) 0.013 (0.040) 8,832 CIV DHS 2011 0.010 (0.007) 0.022 (0.013) 0.040 (0.014) 0.085 (0.040) 9,233 CIV DHS 2011 0.010 (0.	BEN DHS 2000	0.014(0.006) 0.018(0.006)	-0.030 (0.018)	0.026 (0.015)	0.070(0.013) 0.071(0.012)	0.116(0.021)	18,552
BFA DHS 188 DUBS	BEN DHS 2014	0.012(0.006)	-0.042(0.018)	-0.010 (0.014)	0.045 (0.004)	$0.070 \ (0.032)$	14,559
$ \begin{array}{c} \mbox{FFA} DHS 2010 \\ \mbox{FFA} DHS$	BFA DHS 1998 BFA DHS 2003	$0.019 (0.010) \\ 0.021 (0.007)$	0.010 (0.027) -0.022 (0.020)	$0.001 (0.041) \\ 0.085 (0.032)$	0.047 (0.024)	0.089(0.032)	6,110 12.275
BFA DHS 2021 0.030 (0.005) -0.024 (0.015) -0.020 (0.015) 0.086 (0.014) 0.001 (0.022) 15.919 BGD DHS 2004 0.016 (0.005) -0.000 (0.021) 0.003 (0.000) -0.000 (0.022) 12.788 BGL DHS 2008 0.006 (0.005) 0.006 (0.016) 0.005 (0.006) 0.004 (0.022) 12.778 BGL DHS 2008 0.006 (0.007) -0.021 (0.012) -0.002 (0.023) 15.325 CAF DHS 2010 0.004 (0.006) -0.002 (0.022) 0.025 (0.014) 0.013 (0.036) 8.822 CAF DHS 2010 0.001 (0.005) -0.002 (0.012) 0.013 (0.036) 8.822 CTV DHS 2018 -0.014 (0.007) -0.012 (0.013) 0.027 (0.013) 0.014 (0.036) 8.822 CTV DHS 2014 -0.004 (0.007) -0.021 (0.013) 0.022 (0.013) 0.044 (0.014) 0.055 (0.014) 5.893 CTV DHS 2014 -0.006 (0.007) -0.022 (0.015) 0.021 (0.101) 0.046 (0.017) 0.048 (0.012) 7.204 CTV DHS 2014 -0.006 (0.007) -0.022 (0.021) 0.015 (0.010) 0.025 (0.020) 0.026 (0.011) 0.048 (0.012)	BFA DHS 2010	0.028 (0.006)	-0.030 (0.018)	0.014 (0.021)	0.077(0.014)	0.120(0.022)	16,286
BCD DHS 2004 0.016 0.003 0.018 0.016 0.018 0.013 0.013 0.013 1.3.021 BOL DHS 2008 0.006 0.007 0.023 1.3.021 BOL DHS 2008 0.006 0.005 0.024 0.023 1.3.221 BOL DHS 2008 0.006 0.005 0.024 0.023 1.3.325 BOL DHS 2008 0.006 0.006 0.007 0.023 1.3.325 CAF DHS 2006 0.004 0.006 0.000 0.027 0.025 0.014 0.080 0.033 0.031 1.1.028 CAF DHS 0.001 0.0027 0.021 0.013 0.013 0.0401 1.1.822 CIV DHS 0.001 0.001 0.002 0.016 0.013 0.013 0.014 0.013 0.013 0.015 0.010 0.025 0.030 0.025 0.031 0.031 0.0	BFA DHS 2021	0.030(0.005)	-0.024(0.015)	-0.020 (0.015)	0.086(0.014)	$0.094 \ (0.022)$	16,910
BOL DHS 2003 0.009 (0.005) 0.022 (0.016) -0.009 (0.006) 0.033 (0.023) 20,542 BOL DHS 2008 0.006 (0.005) 0.005 (0.006) 0.047 (0.024) 20,016 BRA DHS 1996 -0.009 (0.006) -0.021 (0.019) 0.027 (0.012) -0.047 (0.023) 15,325 CAF DHS 2066 0.004 (0.007) -0.019 (0.022) 0.023 (0.012) 0.115 (0.035) 11,175 CAF DHS 2010 0.004 (0.006) -0.019 (0.032) 0.023 (0.012) 0.013 (0.046) 8,382 CAF DHS 2018 -0.004 (0.007) -0.019 (0.032) 0.027 (0.013) 0.033 (0.040) 8,382 CIV DHS 2011 0.013 (0.007) 0.022 (0.018) 0.027 (0.019) 0.056 (0.018) 0.157 (0.040) 11,852 CIV DHS 2014 -0.000 (0.007) -0.023 (0.023) 0.020 (0.016) -0.005 (0.040) 5,889 COD DHS 2007 0.018 (0.007) 0.022 (0.011) 0.048 (0.017) 0.048 (0.042) 7,206 COG DHS 2014 -0.006 (0.006) 0.042 (0.023) 0.048 (0.042) 7,206 COG DHS 2014 -0.006 (0.006) 0.042 (0.023) </td <td>BGD DHS 2004 BOL DHS 1998</td> <td>-0.016(0.005)</td> <td>-0.003(0.018)</td> <td>-0.010(0.015) 0.003(0.009)</td> <td>0.017 (0.013)</td> <td>-0.000 (0.028)</td> <td>13,021 12,788</td>	BGD DHS 2004 BOL DHS 1998	-0.016(0.005)	-0.003(0.018)	-0.010(0.015) 0.003(0.009)	0.017 (0.013)	-0.000 (0.028)	13,021 12,788
BOL DHS 2008 0.006 (0.005) 0.008 (0.016) 0.007 (0.024) 20.016 CAF DHS 1994 0.024 (0.010) -0.042 (0.022) 15.325 CAF DHS 2006 0.040 (0.006) -0.007 (0.022) 15.325 CAF DHS 2006 0.041 (0.006) -0.000 (0.022) 0.013 (0.037) 11.028 CAF DHS 2018 -0.004 (0.007) 0.019 (0.022) 0.022 (0.012) 0.013 (0.040) 8,872 CIV DHS 1998 -0.021 (0.038) 0.077 (0.037) 0.013 (0.041) 15,889 CIV DHS 1998 -0.004 (0.007) -0.022 (0.022 (0.018) 0.056 (0.018) 0.157 (0.040) 11,852 CIV DHS 2011 0.013 (0.017) 0.016 (0.015) 0.040 (0.017) 0.088 (0.017) 0.048 (0.010) 16,288 CMR DHS 2014 -0.006 (0.020) -0.006 (0.023) 0.015 (0.010) -0.058 (0.040) 11,576 COD DHS 2014 -0.010 (0.006) -0.025 (0.014) 0.018 (0.020) -0.038 (0.053) 10.991 COM DHS 2012 -0.032 (0.010) 0.022 (0.012) 0.013 (0.010) 0.025 (0.023) 0.006 (0.023) 0.008 (0.037) 10.	BOL DHS 2003	0.009 (0.005)	0.020 (0.016)	-0.008 (0.006)		0.023 (0.023)	20,542
Brak DHS 1990 -0.009 (0.006) -0.001 (0.007) -0.002 (0.012) -0.002 (0.051) 5.325 CAF DHS 2010 -0.001 (0.006) -0.001 (0.022) 0.001 (0.022) 0.013 (0.035) 11.175 CAF DHS 2018 -0.004 (0.007) -0.019 (0.020) 0.002 (0.012) 0.013 (0.040) 8.782 CIV DHS 1994 -0.021 (0.008) -0.010 (0.020) 0.022 (0.013) 0.013 (0.040) 8.700 CIV DHS 1994 -0.021 (0.008) -0.010 (0.020) 0.022 (0.013) 0.014 (0.044) 0.882 CIV DHS 2011 0.013 (0.007) 0.022 (0.018) 0.021 (0.010) 0.005 (0.014) 0.882 CIV DHS 2011 -0.013 (0.007) 0.022 (0.016) -0.005 (0.044) 5.889 CMR DHS 1998 -0.040 (0.099) -0.009 (0.209) -0.025 (0.021) 0.016 (0.017) -0.035 (0.044) 5.889 COD DHS 2007 0.018 (0.007) 0.022 (0.021) 0.013 (0.017) -0.038 (0.040) 10.575 COD DHS 2012 -0.032 (0.014) -0.031 (0.015) 0.007 (0.034) 0.083 (0.049) -0.038 (0.040) 10.575 COD DH	BOL DHS 2008	0.006(0.005)	0.008(0.016)	0.005(0.006)		0.047 (0.024)	20,016
$ \begin{array}{c} {\rm CAF\ DHS\ 2006} & 0.064\ (0.066) & -0.000\ (0.022) & 0.025\ (0.014) & 0.080\ (0.037) & 11.028 \\ {\rm CAF\ DHS\ 2018} & -0.04\ (0.007) & -0.019\ (0.020) & 0.002\ (0.012) & 0.113\ (0.036) & 8.832 \\ {\rm CV\ DHS\ 1998} & -0.021\ (0.008) & -0.010\ (0.020) & 0.029\ (0.026) & 0.013\ (0.049) & 8.700 \\ {\rm CU\ DHS\ 1998} & -0.04\ (0.007) & -0.019\ (0.020) & 0.029\ (0.026) & 0.015\ (0.049) & 0.575\ (0.049) & 11.852 \\ {\rm CW\ DHS\ 1998} & -0.009\ (0.090) & -0.009\ (0.023)\ 0.0226\ (0.019) & 0.056\ (0.018) & 0.157\ (0.049) & 11.852 \\ {\rm CW\ DHS\ 2011} & 0.013\ (0.007) & 0.022\ (0.018) & 0.026\ (0.016) & -0.055\ (0.044) & 5.889 \\ {\rm CMR\ DHS\ 2014} & -0.000\ (0.007) & -0.040\ (0.019) & 0.026\ (0.010) & 0.068\ (0.017) & 0.088\ (0.049) & 10.575 \\ {\rm COD\ DHS\ 2007} & 0.018\ (0.007) & 0.022\ (0.021) & 0.015\ (0.010) & 0.068\ (0.017) & 0.088\ (0.049) & 10.575 \\ {\rm CCM\ DHS\ 2012} & -0.033\ (0.007)\ (0.022\ (0.021) & 0.013\ (0.012) & -0.055\ (0.025) & 0.044\ (0.043) & 7.206 \\ {\rm CCM\ DHS\ 2012} & -0.033\ (0.006) & 0.033\ (0.022\ (0.021) & 0.016\ (0.017) & 0.088\ (0.049) & -0.003\ (0.049) & -0.003\ (0.049) & -0.035\ (0.050\) & 2.961 \\ {\rm CCM\ DHS\ 2012} & -0.032\ (0.010\ 0.005\ (0.023\) & 0.001\ (0.020\) & -0.055\ (0.025\) & 0.012\ (0.076\) & 5.331 \\ {\rm CTH\ DHS\ 2000} & 0.007\ (0.066\) & -0.025\ (0.014\) & -0.010\ (0.006\) & 0.028\ (0.049\) & -0.035\ (0.049\) & -0.035\ (0.049\) & -0.035\ (0.049\) & -0.035\ (0.049\) & -0.055\ (0.049\) & -0.055\ (0.049\) & -0.055\ (0.049\) & -0.055\ (0.049\) & -0.055\ (0.049\) & -0.055\ (0.049\) & -0.055\ (0.049\) & -0.055\ (0.049\) & -0.055\ (0.049\) & -0.015\ (0.049\) & -0.015\ (0.049\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.028\ (0.059\) & -0.0$	CAF DHS 1996	-0.009(0.006) 0.024(0.010)	-0.021 (0.019) -0.049 (0.027)	$0.027 (0.012) \\ 0.043 (0.026)$		$-0.002 (0.032) \\ 0.142 (0.051)$	15,325 5 901
CAF DHS 2010 0.001 (0.006) 0.001 (0.022) 0.002 (0.012) 0.013 (0.036) 8.832 CIV DBS 1994 -0.021 (0.008) -0.010 (0.200) 0.022 (0.026) 0.013 (0.040) 8,700 CIV DBS 1994 0.013 (0.007) 0.022 (0.018) 0.021 (0.013) 0.056 (0.018) 0.137 (0.040) 11,852 CIV DBS 2011 0.013 (0.007) 0.022 (0.016) 0.040 (0.014) 0.088 (0.040) 16,288 CMR DBS 2014 -0.000 (0.007) -0.040 (0.023) 0.022 (0.016) -0.005 (0.040) 9,223 COD DBS 2007 0.018 (0.007) 0.022 (0.010) 0.068 (0.017) 0.048 (0.042) 7,260 COD DBS 2007 0.018 (0.007) 0.022 (0.011) 0.016 (0.001) -0.008 (0.043) 1,260 COM DBS 2012 -0.033 (0.012) 0.033 (0.012) 0.033 (0.023) 0.033 (0.026) 2,961 CUB DBS 2014 0.001 (0.006) -0.025 (0.023) 0.038 (0.040) 0.115 (0.016) 0.008 (0.066) 7,757 ETH DBS 2000 0.012 (0.008) 0.021 (0.020) 0.015 (0.023) 0.025 (0.023) 1,502	CAF DHS 2006	0.004 (0.006)	-0.000 (0.022)	0.025 (0.014)		0.080(0.037)	11,028
CAP DHS 2018 -0.004 (0.007) -0.019 (0.020) 0.029 (0.022) 0.013 (0.040) 8.832 CIV DBIS 1994 -0.021 (0.008) -0.010 (0.020) 0.021 (0.041) 0.055 (0.041) 0.045 (0.030) 3.120 CIV DBIS 1994 -0.021 (0.000) -0.023 (0.017) 0.016 (0.014) 0.055 (0.041) 0.658 (0.030) 1.6585 CNR DBIS 2007 -0.009 (0.000) -0.009 (0.000) -0.005 (0.044) 1.6585 COD DHIS 2007 0.018 (0.007) -0.024 (0.011) 0.016 (0.010) -0.005 (0.040) 1.6575 COD DHIS 2007 -0.018 (0.007) 0.022 (0.012) 0.013 (0.012) 0.048 (0.042) 7.206 COD DHIS 2014 -0.006 (0.006) 0.040 (0.223) 0.011 (0.026) 0.0128 (0.045) 5.331 COM DHS 1996 -0.031 (0.015) 0.007 (0.034) 0.011 (0.006) 0.0128 (0.040) 5.431 CUB DHS 2014 -0.010 (0.066) -0.022 (0.014) 0.011 (0.006) 0.0128 (0.023) 0.096 (0.029) 1.502 CUB DHS 2014 0.010 (0.066) -0.022 (0.023) 0.006 (0.022) 1.502 1.502	CAF DHS 2010	0.001 (0.006)	0.001 (0.022)	0.007(0.012)		0.115(0.035)	11,175
$ \begin{array}{c} \mbox{CV DHS 1998} & 0.014 (0.014) & 0.027 (0.033) & 0.077 (0.037) & 0.005 (0.015) & 0.157 (0.040) \\ \mbox{CV DHS 2011} & 0.013 (0.007) & 0.022 (0.018) & 0.017 (0.019) & 0.056 (0.018) & 0.157 (0.040) \\ \mbox{DHS 2021} & -0.004 (0.005) & -0.013 (0.017) & 0.010 (0.015) & 0.040 (0.014) & 0.082 (0.030) & 15,288 \\ \mbox{CMR DHS 2014} & -0.000 (0.007) & -0.040 (0.019) & 0.026 (0.010) & -0.055 (0.044) & 9,923 \\ \mbox{COD DHS 2007} & 0.018 (0.007) & -0.042 (0.022) & 0.013 (0.010) & -0.068 (0.017) & 0.088 (0.040) & 10,575 \\ \mbox{COG DHS 2007} & -0.003 (0.008) & 0.033 (0.022) & 0.013 (0.012) & -0.048 (0.042) & 7,206 \\ \mbox{COG DHS 2014} & -0.006 (0.006) & 0.002 (0.0144) & 0.031 (0.020) & -0.055 (0.025) & 0.028 (0.055) & 2,961 \\ \mbox{COM DHS 1996} & -0.031 (0.015) & 0.007 (0.034) & 0.083 (0.049) & -0.055 (0.025) & 0.028 (0.055) & 5,331 \\ \mbox{CUB DHS 2014} & 0.010 (0.006) & -0.025 (0.022) & 0.010 (0.006) & 0.058 (0.063) & 7,757 \\ \mbox{ETH DHS 2000} & 0.020 (0.007) & 0.056 (0.022) & 0.014 (0.006) & 0.058 (0.040) & 15,418 \\ \mbox{ETH DHS 2000} & 0.020 (0.008) & -0.021 (0.020) & -0.055 (0.025) & 0.028 (0.050) & 7,303 \\ \mbox{GAB DHS 2012} & 0.002 (0.008) & -0.024 (0.021) & 0.016 (0.015) & 0.096 (0.040) & 15,418 \\ \mbox{ETH DHS 2000} & 0.013 (0.009) & 0.001 (0.021) & 0.014 (0.008) & 0.002 (0.013) & 5,455 \\ \mbox{GAB DHS 2012} & 0.002 (0.008) & -0.024 (0.022) & 0.014 (0.005) & 0.049 (0.059) & 7,303 \\ \mbox{GAB DHS 2019} & 0.007 (0.006) & -0.026 (0.012) & 0.002 (0.018) & -0.037 (0.044) & 5,757 \\ \mbox{GA DHS 2019} & 0.007 (0.007) & -0.042 (0.021) & 0.016 (0.018) & -0.037 (0.044) & 5,757 \\ \mbox{GA DHS 2019} & 0.017 (0.007) & -0.046 (0.022) & 0.037 (0.018) & -0.037 (0.044) & 5,757 \\ \mbox{GA DHS 2014} & 0.016 (0.007) & -0.046 (0.022) & 0.037 (0.013) & 0.057 (0.044) & 5,757 \\ \mbox{GA DHS 2014} & 0.016 (0.007) & -0.046 (0.022) & -0.037 (0.044) & 5,757 \\ \mbox{GA DHS 2014} & 0.016 (0.007) & -0.046 (0.022) & -0.037 (0.044) & 5,757 \\ \mbox{GA DHS 2014} & 0.016 (0.007) & -0.046 (0.022) & -0.037 (0.044) & 5,757 \\ GA$	CAF DHS 2018 CIV DHS 1994	-0.004(0.007) -0.021(0.008)	-0.019 (0.020) -0.010 (0.020)	$0.002 (0.012) \\ 0.029 (0.026)$		$0.013 (0.036) \\ 0.013 (0.040)$	8,832 8 700
$ \begin{array}{c cvv DHS 2011 \\ CIV DHS 2011 \\ CUV DHS 2011 \\ CUV DHS 2011 \\ CUV DHS 2012 \\ COM DHS 1998 \\ -0.009 \\ (0.009) \\ -0.009 \\ (0.000) \\ -0.000 \\ (0.007) \\ -0.000 \\ (0.007) \\ -0.000 \\ (0.007) \\ -0.000 \\ (0.007) \\ -0.000 \\ (0.007) \\ -0.000 \\ (0.007) \\ -0.000 \\ (0.007) \\ -0.000 \\ (0.000) \\ -0.000 \\ (0$	CIV DHS 1998	0.014 (0.014)	0.027 (0.033)	0.077 (0.037)		01010 (01010)	3,120
$ \begin{array}{c} \text{CIV} \text{DHS} 2021 & -0.004 (0.006) & -0.013 (0.017) & 0.010 (0.015) & 0.040 (0.014) & 0.082 (0.030) & 16.258 \\ \text{CMR} \text{DHS} 2014 & -0.000 (0.007) & -0.040 (0.019) & 0.026 (0.010) & -0.055 (0.044) & 5,889 \\ \text{CMR} \text{DHS} 2017 & 0.018 (0.007) & -0.040 (0.021) & 0.015 (0.010) & -0.055 (0.044) & 10.975 \\ \text{COG} \text{DHS} 2007 & 0.018 (0.007) & -0.022 (0.021) & 0.015 (0.010) & -0.068 (0.017) \\ \text{COG} \text{DHS} 2007 & -0.03 (0.008) & 0.033 (0.022) & 0.011 (0.012) & 0.048 (0.042) & 7,206 \\ \text{COG} \text{DHS} 2005 & -0.003 (0.008) & 0.033 (0.022) & 0.011 (0.009) & -0.058 (0.043) & 10.991 \\ \text{COM} \text{DHS} 2014 & -0.000 (0.006) & 0.002 (0.023) & 0.001 (0.006) & -0.055 (0.025) & 0.038 (0.046) & 2,5331 \\ \text{CHE} \text{DHS} 2014 & -0.010 (0.006) & 0.022 (0.014) & -0.010 (0.006) & -0.015 (0.025) & 0.096 (0.040) & 15,418 \\ \text{ETH} \text{DHS} 2010 & 0.020 (0.007) & -0.056 (0.022) & 0.054 (0.023) & 0.0696 (0.040) & 15,418 \\ \text{ETH} \text{DHS} 2010 & 0.020 (0.006) & -0.013 (0.016) & 0.047 (0.015) & 0.069 (0.029) & 15,092 \\ \text{CHE} \text{DHS} 2012 & 0.002 (0.008) & -0.024 (0.020) & 0.014 (0.008) & -0.002 (0.043) & 5,455 \\ \text{GAE} \text{DHS} 2012 & -0.017 (0.006) & -0.013 (0.016) & 0.023 (0.011) & -0.040 (0.022) & 0.049 (0.089) & 7,303 \\ \text{GAE} \text{DHS} 2012 & -0.027 (0.008) & 0.025 (0.021) & 0.006 (0.015) & 0.049 (0.089) & 7,303 \\ \text{GAE} \text{DHS} 2012 & -0.017 (0.007) & 0.043 (0.019) & 0.023 (0.010) & -0.005 (0.018) & -0.023 (0.055) & 11.442 \\ \text{GEO} \text{DHS} 2018 & 0.007 (0.016) & -0.026 (0.012) & 0.003 (0.013) & -0.037 (0.044) & 10,331 \\ \text{GHA} \text{DHS} 2014 & -0.016 (0.007) & -0.024 (0.021) & -0.032 (0.013) & -0.037 (0.044) & 10,331 \\ \text{GHA} \text{DHS} 2014 & -0.016 (0.007) & -0.026 (0.021) & -0.003 (0.013) & -0.037 (0.044) & 10,331 \\ \text{GHA} \text{DHS} 2014 & -0.016 (0.007) & -0.026 (0.021) & -0.003 (0.013) & -0.037 (0.044) & 10,331 \\ \text{GHA} \text{DHS} 2014 & -0.016 (0.007) & -0.026 (0.021) & -0.002 (0.021) & -0.030 (0.046) & 11,096 \\ \text{GIN} \text{DHS} 2013 & -0.017 (0.008) & -0.021 (0.021) & -0.005 (0.020) & -0.030 (0.044) & 10,931 \\ \text{GHA} \text{DHS} 2013 & -0.017 (0.008) & -0.0$	CIV DHS 2011	0.013(0.007)	0.022(0.018)	0.021 (0.019)	0.056(0.018)	0.157(0.040)	11,852
$ \begin{array}{c} \mbox{CMR DHS 2014} & -0.000 (0.007) & -0.040 (0.019) & 0.026 (0.010) & -0.068 (0.040) & 9.923 \\ \mbox{COD DHS 2007} & 0.018 (0.007) & 0.033 (0.022) & 0.012 (0.010) & 0.068 (0.017) & 0.088 (0.042) & 7.206 \\ \mbox{COC DHS 2014} & -0.066 (0.006) & 0.040 (0.022) & 0.012 (0.009) & -0.083 (0.031) & 10.991 \\ \mbox{COM DHS 1996} & -0.031 (0.015) & 0.007 (0.034) & 0.083 (0.049) & 0.003 (0.065) & 2.961 \\ \mbox{COM DHS 2012} & -0.032 (0.010) & 0.025 (0.023) & 0.001 (0.020) & -0.055 (0.025) & 0.028 (0.050) & 5.331 \\ \mbox{CUE DHS 2014} & 0.010 (0.066) & -0.025 (0.014) & -0.010 (0.066) & 0.012 (0.076) & 7.190 \\ \mbox{CUE DHS 2019} & 0.000 (0.066) & -0.025 (0.014) & -0.011 (0.066) & 0.069 (0.029) & 15.418 \\ \mbox{FTH DHS 2000} & 0.020 (0.007) & 0.056 (0.022) & 0.054 (0.023) & 0.066 (0.029) & 15.418 \\ \mbox{FTH DHS 2000} & 0.020 (0.008) & -0.024 (0.020) & 0.016 (0.015) & 0.069 (0.029) & 15.418 \\ \mbox{FTH DHS 2010} & 0.002 (0.008) & -0.024 (0.020) & 0.014 (0.008) & 0.002 (0.043) & 5.455 \\ \mbox{GAB DHS 2012} & 0.002 (0.008) & 0.025 (0.021) & 0.016 (0.015) & 0.023 (0.055 & 11.442 \\ \mbox{GAD DHS 2019} & 0.007 (0.006) & -0.026 (0.012) & 0.009 (0.005) & 0.115 (0.043) & 8.877 \\ \mbox{GHA DHS 2019} & 0.007 (0.006) & -0.026 (0.012) & 0.029 (0.011) & 0.065 (0.028) & 0.023 (0.055 & 11.442 \\ \mbox{GHA DHS 2010} & 0.007 (0.006) & -0.026 (0.012) & 0.029 (0.011) & 0.051 (0.018) & 0.036 (0.049) & 5.735 \\ \mbox{GHA DHS 2014} & 0.016 (0.007) & -0.024 (0.023) & 0.018 (0.030) & 0.019 & 0.030 (0.019) & 0.033 (0.046) & 7.038 \\ \mbox{GHA DHS 2014} & 0.002 (0.007) & -0.042 (0.023) & 0.018 (0.030) & 0.010 & 0.021 & 0.026 (0.012) & 0.008 (0.011) & 0.051 (0.018) & 0.036 (0.039) & 7.031 \\ \mbox{GHA DHS 2014} & 0.016 (0.007) & -0.042 (0.022) & 0.008 (0.011) & 0.051 (0.018) & 0.016 (0.039) & 7.031 \\ \mbox{GHA DHS 2014} & 0.007 (0.008) & 0.042 (0.022) & 0.008 (0.011) & 0.016 (0.039) & 7.031 \\ \mbox{GHA DHS 2014} & 0.007 (0.008) & 0.042 (0.022) & 0.008 (0.001) & 0.030 (0.019) & 0.033 (0.046) & 7.84 \\ \mbox{HD DHS 2014} & 0.007 (0.008) & 0.042 (0$	CIV DHS 2021 CMB DHS 1998	-0.004(0.005) -0.009(0.009)	-0.013(0.017) -0.009(0.023)	$0.010 (0.015) \\ 0.020 (0.016)$	0.040(0.014)	-0.082(0.030)	16,288 5 889
$ \begin{array}{c} \mbox{COD DHS 2007} & 0.018 (0.007) & 0.022 (0.021) & 0.015 (0.010) & 0.068 (0.017) & 0.088 (0.040) & 10,575 \\ \mbox{COG DHS 2014} & -0.006 (0.006) & 0.040 (0.022) & 0.012 (0.009) & -0.083 (0.034) & 10,991 \\ \mbox{COM DHS 2012} & -0.032 (0.010) & 0.025 (0.023) & 0.001 (0.020) & -0.055 (0.025) & 0.028 (0.050) & 5,331 \\ \mbox{CUB DHS 2014} & 0.010 (0.006) & -0.025 (0.014) & -0.010 (0.006) & 0.058 (0.063) & 7,757 \\ \mbox{CUB DHS 2019} & 0.000 (0.006) & 0.002 (0.014) & -0.010 (0.006) & 0.058 (0.063) & 7,757 \\ \mbox{CUB DHS 2010} & 0.000 (0.006) & -0.025 (0.014) & -0.010 (0.006) & 0.058 (0.063) & 7,757 \\ \mbox{CUB DHS 2012} & 0.000 (0.006) & -0.028 (0.014) & 0.011 (0.006) & 0.058 (0.063) & 7,757 \\ \mbox{CH DHS 2000} & 0.020 (0.007) & -0.024 (0.020) & 0.014 (0.008) & 0.002 (0.043) & 5,455 \\ \mbox{GAB DHS 2010} & -0.017 (0.006) & -0.018 (0.016) & 0.047 (0.015) & 0.049 (0.059) & 7,303 \\ \mbox{GAB DHS 2010} & -0.017 (0.006) & -0.028 (0.012) & 0.009 (0.001) & -0.005 (0.018) & -0.033 (0.055) & 11,442 \\ \mbox{GAD DHS 2010} & -0.07 (0.007) & 0.043 (0.019) & 0.023 (0.010) & -0.005 (0.018) & -0.033 (0.055) & 11,442 \\ \mbox{GHA DHS 2006} & 0.007 (0.007) & -0.024 (0.021) & 0.009 (0.011) & 0.064 (0.022) & 0.016 (0.018) & -0.033 (0.055) & 11,442 \\ \mbox{GHA DHS 2006} & 0.007 (0.007) & -0.024 (0.021) & 0.009 (0.011) & 0.051 (0.018) & -0.033 (0.046) & 1,6331 \\ \mbox{GHA DHS 2018} & 0.001 (0.007) & -0.024 (0.023) & 0.013 (0.013) & -0.037 (0.044) & 10,331 \\ \mbox{GHA DHS 2018} & 0.014 (0.007) & -0.024 (0.022) & -0.003 (0.011) & 0.051 (0.018) & -0.037 (0.044) & 10,331 \\ \mbox{GHA DHS 2011} & 0.007 (0.006) & -0.056 (0.012) & -0.003 (0.013) & -0.037 (0.044) & 10,633 \\ \mbox{GHA DHS 2011} & 0.007 (0.006) & -0.056 (0.021) & -0.003 (0.011) & 0.030 (0.019) & -0.037 (0.044) & 10,633 \\ \mbox{GHA DHS 2013} & -0.010 (0.008) & -0.021 (0.022) & -0.002 (0.021) & -0.049 (0.022) & 10,647 \\ \mbox{GHA DHS 2014} & 0.006 (0.007) & -0.024 (0.022) & -0.002 (0.021) & -0.049 (0.022) & 10,647 \\ \mbox{GHA DHS 2014} & 0.006 (0.007) & -0.048 (0.027) & -$	CMR DHS 2014	-0.000 (0.007)	-0.040 (0.019)	0.026 (0.010)		-0.005 (0.040)	9,923
	COD DHS 2007	0.018(0.007)	0.022(0.021)	0.015(0.010)	0.068(0.017)	0.088(0.040)	10,575
	COG DHS 2005 COG DHS 2014	-0.003 (0.008)	$0.033 (0.022) \\ 0.040 (0.022)$	$0.031 (0.012) \\ 0.012 (0.009)$		0.048 (0.042) -0.083 (0.034)	7,206 10.991
$ \begin{array}{c} \text{CUB} \text{ DHS} 2012 & -0.032 \\ (0.101) & 0.025 \\ (0.025) & 0.010 \\ (0.006) & -0.025 \\ (0.025) & 0.012 \\ (0.076) & 7.190 \\ \text{CUB} \text{ DHS} 2019 & 0.000 \\ (0.006) & 0.002 \\ (0.006) & 0.002 \\ (0.006) & 0.002 \\ (0.006) & 0.002 \\ (0.007) & 0.056 \\ (0.022) & 0.054 \\ (0.022) & 0.054 \\ (0.023) & 0.069 \\ (0.029) & 15,092 \\ \text{FII} \text{ DHS} 2001 & 0.002 \\ (0.006) & -0.018 \\ (0.016) & 0.047 \\ (0.015) & 0.069 \\ (0.029) & 15,092 \\ \text{FII} \text{ DHS} 2001 & 0.002 \\ (0.008) & -0.024 \\ (0.020) & 0.001 \\ (0.020) & 0.001 \\ (0.020) & 0.004 \\ (0.020) & 0.004 \\ (0.020) & 0.001 \\ (0.021) & 0.014 \\ (0.008) & 0.002 \\ (0.040) & 0.055 \\ (0.040) & 0.545 \\ \text{GAB} \text{ DHS} 2012 & 0.002 \\ (0.008) & 0.025 \\ (0.008) & 0.025 \\ (0.019) & 0.023 \\ (0.011) & 0.064 \\ (0.022) & 0.018 \\ (0.055 \\ (0.028) \\ 0.005 \\ (0.018) & -0.023 \\ (0.018) \\ 0.005 \\ (0.018) & -0.023 \\ (0.018) \\ 0.005 \\ (0.018) & -0.023 \\ (0.018) \\ 0.055 \\ (0.028) \\ 0.067 \\ (0.044) \\ 0.033 \\ (0.044) \\ 0.033 \\ (0.044) \\ 0.033 \\ (0.046) \\ 0.033 \\ (0.046) \\ 0.033 \\ (0.041) \\ 0.033 \\ (0.041) \\ 0.033 \\ (0.041) \\ 0.033 \\ (0.041) \\ 0.033 \\ (0.042) \\ 0.034 \\ (0.046) \\ 0.034 \\ (0.046) \\ 0.034 \\ (0.046) \\ 0.033 \\ (0.042) \\ 0.031 \\ (0.041) \\ 0.033 \\ (0.042) \\ 0.031 \\ (0.041) \\ 0.033 \\ (0.042) \\ 0.031 \\ (0.041) \\ 0.033 \\ (0.042) \\ 0.031 \\ (0.041) \\ 0.033 \\ (0.042) \\ 0.031 \\ (0.041) \\ 0.033 \\ (0.042) \\ 0.031 \\ (0.041) \\ 0.033 \\ (0.042) \\ 0.031 \\ (0.041) \\ 0.033 \\ (0.020) \\ 0.031 \\ (0.042) \\ 0.031 \\ (0.042) \\ 0.031 \\ (0.042) \\ 0.031 \\ (0.042) \\ 0.031 \\ (0.042) \\ 0.031 \\ (0.042) \\ 0.031 \\ (0.042) \\ 0.031 \\ (0.042) \\ 0.031 \\ (0.042) \\ 0.031 \\ (0.042) \\ 0.031 $	COM DHS 1996	-0.031 (0.015)	0.007 (0.034)	0.083(0.049)		0.003 (0.065)	2,961
	COM DHS 2012	-0.032 (0.010)	0.025(0.023)	0.001 (0.020)	-0.055(0.025)	0.028 (0.050)	5,331
$ \begin{array}{c} \mbox{ETH} \ \mbox{DHS} \ 2000 & 0.020 \ (0.007) & 0.056 \ (0.022) & 0.054 \ (0.023) & 0.096 \ (0.040) & 15,418 \\ \mbox{ETH} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	CUB DHS 2014 CUB DHS 2019	$0.010 (0.006) \\ 0.000 (0.006)$	$-0.025 (0.014) \\ 0.002 (0.014)$	-0.010(0.006) 0.011(0.006)		$0.112 (0.076) \\ 0.058 (0.063)$	7,190
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ETH DHS 2000	0.020(0.007)	0.056(0.022)	0.054 (0.023)		0.096 (0.040)	15,418
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ETH DHS 2005	0.017 (0.006)	-0.018 (0.016)	0.047 (0.015)		0.069 (0.029)	15,092
	GAB DHS 2021	-0.013(0.008)	$-0.024 (0.020) \\ 0.001 (0.021)$	$0.014 (0.008) \\ 0.016 (0.015)$		$0.002 (0.043) \\ 0.049 (0.059)$	5,455 7.303
	GAB DHS 2012	0.002 (0.008)	0.025 (0.020)	0.002 (0.011)	0.064(0.022)	0.139(0.068)	9,210
	GAB DHS 2019	-0.017(0.007)	0.043(0.019)	0.023(0.010)	-0.005(0.018)	-0.023 (0.055)	11,442
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GEO DHS 2018 GHA DHS 1998	$0.007 (0.006) \\ 0.005 (0.011)$	$-0.026 (0.012) \\ 0.069 (0.037)$	-0.009(0.005)	0.055(0.028)	0.115(0.043)	8,877 4.867
	GHA DHS 2006	0.007 (0.010)	0.051 (0.028)	0.025 (0.016)	0.000 (0.020)	$0.067 \ (0.054)$	5,735
	GHA DHS 2008	0.014(0.007)	-0.024(0.021)	0.029(0.011)	$0.051 \ (0.018)$	0.027 (0.044)	10,607
	GHA DHS 2011 GHA DHS 2014	$0.024 (0.008) \\ 0.016 (0.007)$	-0.056(0.021) -0.042(0.022)	-0.003(0.013) 0.003(0.011)	0.030(0.019)	-0.037 (0.044)	9.667
	GHA DHS 2017	-0.002 (0.007)	-0.005 (0.017)	0.008 (0.009)		-0.030 (0.046)	11,096
	GIN DHS 1999	0.015(0.010)	0.063 (0.025)	0.037(0.038)		-0.004(0.036)	7,038
GMB DHS 2013 $-0.010 (0.008)$ $-0.021 (0.017)$ $0.054 (0.021)$ $-0.012 (0.027)$ $-0.049 (0.042)$ $10,617$ GMB DHS 2018 $-0.014 (0.007)$ $-0.007 (0.016)$ $0.023 (0.019)$ $-0.009 (0.042)$ $10,855$ GMB DHS 2014 $0.005 (0.007)$ $-0.009 (0.017)$ $0.061 (0.021)$ $-0.005 (0.020)$ $0.019 (0.041)$ $10,988$ GNB DHS 2014 $0.005 (0.007)$ $-0.008 (0.015)$ $-0.015 (0.014)$ $0.034 (0.046)$ $9,784$ GNB DHS 2014 $0.003 (0.004)$ $0.000 (0.011)$ $0.007 (0.008)$ $0.014 (0.010)$ $0.033 (0.020)$ $24,718$ HND DHS 2011 $0.003 (0.005)$ $-0.010 (0.011)$ $0.002 (0.007)$ $-0.004 (0.025)$ $19,674$ HTI DHS 2019 $0.003 (0.005)$ $-0.010 (0.011)$ $0.002 (0.007)$ $-0.004 (0.025)$ $19,674$ HTI DHS 2010 $-0.007 (0.008)$ $-0.011 (0.017)$ $0.008 (0.057)$ $10,977$ HTI DHS 2000 $-0.007 (0.008)$ $-0.001 (0.015)$ $0.008 (0.018)$ $-0.012 (0.037)$ $11,993$ HTI DHS 2012 $-0.006 (0.006)$ $-0.015 (0.014)$ $-0.001 (0.012)$ $0.013 (0.017)$ $0.008 (0.057)$ $10,977$ HTI DHS 2012 $-0.006 (0.006)$ $-0.015 (0.014)$ $-0.001 (0.015)$ $0.008 (0.018)$ $-0.012 (0.037)$ $11,993$ HTI DHS 2015 $0.008 (0.002)$ $-0.018 (0.007)$ $0.002 (0.002)$ $0.025 (0.003)$ $0.055 (0.007)$ $768,359$ IND DHS 2015 $0.008 (0.002)$ $-0.018 (0.007)$ $0.002 (0.003)$ $0.019 (0.003)$ $0.017 (0.011)$ $0.022 (0.037)$ <td< td=""><td>GIN DHS 2005 GIN DHS 2018</td><td>$0.021 (0.009) \\ 0.041 (0.008)$</td><td>$-0.024 (0.023) \\ 0.042 (0.022)$</td><td>-0.018(0.030)</td><td>0.087(0.021)</td><td>$0.106 (0.039) \\ 0.116 (0.033)$</td><td>9.213</td></td<>	GIN DHS 2005 GIN DHS 2018	$0.021 (0.009) \\ 0.041 (0.008)$	$-0.024 (0.023) \\ 0.042 (0.022)$	-0.018(0.030)	0.087(0.021)	$0.106 (0.039) \\ 0.116 (0.033)$	9.213
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GMB DHS 2013	-0.010 (0.008)	-0.021 (0.017)	0.054 (0.021)	-0.012 (0.021)	-0.049 (0.042)	10,617
GNB DHS 2019 $-0.004 (0.007)$ $-0.009 (0.017)$ $0.006 (0.021)$ $-0.005 (0.020)$ $0.019 (0.041)$ $10,988$ GNB DHS 2018 $0.007 (0.008)$ $0.006 (0.017)$ $0.015 (0.014)$ $0.003 (0.047)$ $10,415$ GTM DHS 2014 $0.003 (0.004)$ $0.000 (0.011)$ $0.007 (0.008)$ $0.014 (0.010)$ $0.033 (0.020)$ $24,718$ HND DHS 2011 $0.007 (0.004)$ $0.024 (0.012)$ $-0.005 (0.008)$ $0.014 (0.010)$ $0.033 (0.020)$ $24,718$ HND DHS 2019 $0.003 (0.005)$ $-0.010 (0.011)$ $0.002 (0.007)$ $-0.004 (0.025)$ $19,674$ HTI DHS 1994 $-0.013 (0.010)$ $0.022 (0.026)$ $-0.015 (0.026)$ $-0.012 (0.049)$ $5,568$ HTI DHS 2000 $-0.007 (0.008)$ $-0.003 (0.018)$ $0.001 (0.017)$ $0.008 (0.057)$ $10,977$ HTI DHS 2012 $-0.006 (0.006)$ $-0.015 (0.014)$ $-0.001 (0.015)$ $0.008 (0.013)$ $-0.012 (0.037)$ $11,093$ HTI DHS 2012 $-0.006 (0.006)$ $-0.015 (0.014)$ $-0.001 (0.012)$ $0.013 (0.017)$ $0.060 (0.036)$ $15,135$ IND DHS 2015 $0.008 (0.002)$ $-0.018 (0.007)$ $0.001 (0.004)$ $0.022 (0.003)$ $0.055 (0.007)$ $768,359$ IND DHS 2019 $0.002 (0.008)$ $-0.011 (0.033)$ $-0.013 (0.013)$ $0.172 (0.043)$ $5,655$ KEN DHS 1998 $0.022 (0.008)$ $-0.016 (0.024)$ $0.014 (0.022)$ $0.025 (0.003)$ $0.055 (0.007)$ $766,282$ KEN DHS 2008 $0.006 (0.008)$ $-0.001 (0.033)$ $-0.013 (0.013)$ $0.172 (0.043)$ <	GMB DHS 2018	-0.014(0.007)	-0.007 (0.016)	0.023(0.019)	0.005 (0.000)	-0.090(0.042)	10,855
GNB DHS 2018 $0.007 (0.008)$ $0.006 (0.017)$ $0.015 (0.014)$ $0.021 (0.047)$ $10,415$ GTM DHS 2014 $0.003 (0.004)$ $0.000 (0.011)$ $0.007 (0.008)$ $0.014 (0.010)$ $0.033 (0.020)$ $24,718$ HND DHS 2011 $0.007 (0.004)$ $0.024 (0.012)$ $-0.005 (0.008)$ $0.014 (0.020)$ $25,326$ HND DHS 2019 $0.003 (0.005)$ $-0.010 (0.011)$ $0.002 (0.007)$ $-0.004 (0.022)$ $19,674$ HTI DHS 1994 $-0.013 (0.010)$ $0.020 (0.026)$ $-0.015 (0.026)$ $-0.012 (0.049)$ $5,568$ HTI DHS 2000 $-0.007 (0.008)$ $-0.003 (0.018)$ $0.001 (0.017)$ $0.008 (0.057)$ $10,977$ HTI DHS 2012 $-0.006 (0.006)$ $-0.015 (0.014)$ $-0.001 (0.015)$ $0.008 (0.013)$ $-0.012 (0.037)$ $11,093$ HTI DHS 2012 $-0.006 (0.006)$ $-0.015 (0.014)$ $-0.001 (0.012)$ $0.013 (0.017)$ $0.060 (0.036)$ $15,135$ IND DHS 2015 $0.008 (0.002)$ $-0.018 (0.007)$ $0.004 (0.002)$ $0.028 (0.005)$ $0.076 (0.013)$ $139,980$ IND DHS 2019 $0.002 (0.008)$ $-0.016 (0.033)$ $0.004 (0.002)$ $0.008 (0.003)$ $0.017 (0.043)$ $5,655$ KEN DHS 1998 $0.022 (0.008)$ $-0.016 (0.024)$ $0.013 (0.013)$ $0.017 (0.041)$ $8,075$ KEN DHS 2008 $0.006 (0.008)$ $-0.001 (0.021)$ $0.002 (0.003)$ $0.017 (0.041)$ $8,259$ KEN DHS 2014 $0.008 (0.004)$ $0.012 (0.021)$ $0.002 (0.005)$ $0.022 (0.037)$ $8,600$ KEN DHS 2014 $0.008 (0.004)$	GNB DHS 2019 GNB DHS 2014	-0.004(0.007) 0.005(0.007)	-0.009(0.017) -0.008(0.015)	-0.015(0.021)	-0.005 (0.020)	0.019(0.041) 0.034(0.046)	9.784
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GNB DHS 2018	0.007 (0.008)	0.006 (0.017)	0.015 (0.014)		0.021 (0.047)	10,415
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GTM DHS 2014	0.003 (0.004)	0.000(0.011)	0.007 (0.008)	$0.014 \ (0.010)$	0.033 (0.020)	24,718
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HND DHS 2011 HND DHS 2019	$0.007 (0.004) \\ 0.003 (0.005)$	-0.024(0.012)	-0.005(0.008) 0.002(0.007)		-0.014(0.020)	25,326 19.674
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HTI DHS 1994	-0.013 (0.010)	0.020 (0.026)	-0.015 (0.026)		-0.027 (0.049)	5,568
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HTI DHS 2000	-0.007 (0.008)	-0.003 (0.018)	0.001 (0.017)	0.000 (0.010)	0.008 (0.057)	10,977
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HTI DHS 2005 HTI DHS 2012	-0.004 (0.007) -0.006 (0.006)	-0.015(0.016)	-0.001 (0.015) -0.001 (0.012)	$0.008 (0.018) \\ 0.013 (0.017)$	$-0.012 (0.037) \\ 0.060 (0.036)$	11,093 15,135
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IND DHS 2005	0.008 (0.002)	-0.018 (0.007)	0.001 (0.004)	0.028 (0.005)	0.076(0.013)	139,980
IND Drs 2019 0.002 (0.001) -0.006 (0.003) 0.004 (0.002) 0.008 (0.003) 0.019 (0.003) 766,282 KEN DHS 1993 0.020 (0.008) -0.001 (0.033) -0.013 (0.013) 0.172 (0.043) 5,655 KEN DHS 1998 0.022 (0.008) -0.016 (0.024) 0.013 (0.010) 0.072 (0.041) 8,075 KEN DHS 2003 0.013 (0.007) -0.012 (0.021) 0.014 (0.011) -0.022 (0.037) 8,600 KEN DHS 2008 0.006 (0.008) 0.008 (0.022) -0.008 (0.009) 0.026 (0.021) 8,259 KEN DHS 2014 0.008 (0.044) 0.010 (0.012) -0.002 (0.004) 0.013 (0.021) 31,482 KEN DHS 2022 -0.002 (0.004) 0.002 (0.011) 0.002 (0.004) 0.017 (0.011) 0.007 (0.022) 32,890 KGZ DHS 2012 0.010 (0.007) 0.202 (0.016) 0.030 (0.017) 0.043 (0.034) 7,693 KHM DHS 2010 0.006 (0.005) 0.019 (0.012) 0.003 (0.013) 0.015 (0.022) 18,018 KHM DHS 2014 0.017 (0.05) 0.003 (0.012) 0.013 (0.021) 0.058 (0.025) 16.461	IND DHS 2015	0.008(0.001)	-0.013 (0.003)	-0.005(0.002)	0.025(0.003)	0.055(0.007)	768,359
KEN DHS 1998 0.022 (0.008) 0.016 (0.024) 0.013 (0.010) 0.0172 (0.041) 8,075 KEN DHS 2003 0.013 (0.007) -0.016 (0.024) 0.013 (0.010) 0.072 (0.041) 8,075 KEN DHS 2003 0.013 (0.007) -0.012 (0.021) 0.014 (0.011) -0.022 (0.037) 8,600 KEN DHS 2008 0.006 (0.008) 0.008 (0.022) -0.008 (0.009) 0.026 (0.021) 8,259 KEN DHS 2014 0.008 (0.044) 0.010 (0.012) -0.002 (0.005) 0.025 (0.010) 0.013 (0.021) 31,482 KEN DHS 2022 -0.002 (0.004) 0.002 (0.011) 0.002 (0.004) 0.017 (0.011) 0.007 (0.022) 32,890 KGZ DHS 2012 0.010 (0.007) 0.202 (0.016) 0.006 (0.005) 0.019 (0.017) 0.043 (0.034) 7,693 KHM DHS 2010 0.006 (0.005) 0.019 (0.012) 0.000 (0.009) 0.030 (0.013) 0.015 (0.022) 18,018 KHM DHS 2014 0.017 (0.05) 0.013 (0.012) 0.013 (0.021) 0.058 (0.025) 16.461	MD DHS 2019 KEN DHS 1993	$0.002 (0.001) \\ 0.020 (0.008)$	-0.006 (0.003) -0.001 (0.033)	-0.004 (0.002)	0.008 (0.003)	$0.019 (0.008) \\ 0.172 (0.043)$	700,282 5.655
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	KEN DHS 1998	0.022 (0.008)	-0.016 (0.024)	0.013(0.010)		0.072(0.041)	8,075
KEN DHS 2008 0.006 (0.008) 0.008 (0.022) -0.008 (0.009) 0.026 (0.021) 8,259 KEN DHS 2014 0.008 (0.004) 0.010 (0.012) -0.002 (0.005) 0.025 (0.010) 0.013 (0.021) 31,482 KEN DHS 2022 -0.002 (0.004) 0.002 (0.011) 0.002 (0.004) 0.017 (0.011) 0.007 (0.022) 32,890 KGZ DHS 2012 0.010 (0.007) 0.020 (0.016) 0.006 (0.005) 0.007 (0.017) 0.043 (0.034) 7,693 KHM DHS 2010 0.006 (0.005) 0.019 (0.012) 0.000 (0.009) 0.030 (0.013) 0.015 (0.022) 18,018 KHM DHS 2014 0.017 (0.005) 0.003 (0.012) 0.013 (0.021) 1.641	KEN DHS 2003	0.013 (0.007)	-0.012 (0.021)	0.014 (0.011)	0.000 (0.001)	-0.022 (0.037)	8,600
KEN DHS 2022 -0.002 (0.004) 0.002 (0.001) 0.002 (0.004) 0.017 (0.011) 0.007 (0.021) 33,800 KEN DHS 2012 0.010 (0.007) 0.020 (0.011) 0.002 (0.004) 0.017 (0.011) 0.007 (0.022) 32,890 KGZ DHS 2012 0.010 (0.007) 0.020 (0.016) 0.006 (0.005) 0.007 (0.017) 0.043 (0.034) 7,693 KHM DHS 2010 0.006 (0.005) 0.019 (0.012) 0.000 (0.009) 0.030 (0.013) 0.015 (0.022) 18,018 KHM DHS 2014 0.017 (0.005) 0.003 (0.012) 0.013 (0.009) 0.058 (0.025) 16.461	KEN DHS 2008 KEN DHS 2014	$0.006 (0.008) \\ 0.008 (0.004)$	$0.008 (0.022) \\ 0.010 (0.012)$	-0.008 (0.009) -0.002 (0.005)	$0.026 (0.021) \\ 0.025 (0.010)$	0.013 (0.021)	8,259 31,482
KGZ DHS 2012 0.010 (0.007) 0.020 (0.016) 0.006 (0.005) 0.007 (0.017) 0.043 (0.034) 7,693 KHM DHS 2010 0.006 (0.005) 0.019 (0.012) 0.000 (0.009) 0.030 (0.013) 0.015 (0.022) 18,018 KHM DHS 2014 0.017 (0.005) 0.019 (0.012) 0.013 (0.009) 0.040 (0.012) 0.058 (0.025) 16.461	KEN DHS 2022	-0.002 (0.004)	0.002 (0.012)	0.002 (0.003)	0.017 (0.011)	0.007 (0.021)	32,890
KHM DHS 2010 0.006 (0.005) 0.019 (0.012) 0.000 (0.009) 0.030 (0.013) 0.015 (0.022) 18,018 KHM DHS 2014 0.017 (0.005) 0.003 (0.012) 0.013 (0.009) 0.040 (0.012) 0.058 (0.025) 16.461	KGZ DHS 2012	0.010 (0.007)	0.020(0.016)	0.006 (0.005)	0.007 (0.017)	0.043 (0.034)	7,693
	KHM DHS 2010 KHM DHS 2014	0.006 (0.005) 0.017 (0.005)	0.019(0.012) 0.003(0.012)	0.000 (0.009) 0.013 (0.009)	$0.030 (0.013) \\ 0.040 (0.012)$	0.015(0.022) 0.058(0.025)	16,018 16,461

Table A7: Effect of man's questionnaire on the characteristics of eligible men

Survey	Age	Degrees of separation from household head	Years of schooling	Ever married	Number of biological children in household	N
KIR DHS 2018	-0.010 (0.009)	-0.022 (0.022)	$0.014 \ (0.010)$		0.007(0.043)	4,226
LAO DHS 2017	0.003 (0.003)	0.002 (0.009)	-0.001(0.006)	0.047 (0.010)	0.013 (0.016)	25,994
LBR DHS 2013 LBR DHS 2019	0.013(0.007) 0.010(0.008)	0.019(0.018) 0.022(0.020)	0.018(0.014) 0.037(0.015)	$0.047 (0.018) \\ 0.051 (0.018)$	0.091(0.045) 0.069(0.046)	9,284 9,366
LSO DHS 2004	0.029(0.010)	-0.051 (0.019)	0.005(0.017)	(, , , ,	0.245(0.060)	7,473
LSO DHS 2009	0.001 (0.009)	-0.036 (0.019)	$0.016\ (0.015)$	-0.012 (0.023)	0.040(0.047)	7,502
LSO DHS 2014 LSO DHS 2018	0.003 (0.009) 0.002 (0.007)	-0.009(0.020) 0.024(0.018)	-0.008(0.014) 0.013(0.009)	0.037 (0.025)	0.033 (0.053) 0.066 (0.047)	7,124
MDA DHS 2005	0.002(0.007) 0.007(0.007)	0.024(0.013) 0.004(0.017)	0.066 (0.054)		-0.039 (0.035)	9,252
MDA DHS 2012	0.003(0.008)	-0.041(0.019)	0.008(0.008)		-0.020 (0.044)	6,439
MDG DHS 2003	0.017 (0.008)	-0.000(0.026)	0.027 (0.014)	0.020 (0.010)	0.050 (0.044)	9,012
MLI DHS 1995	0.012(0.003) 0.022(0.008)	0.010(0.018) 0.045(0.029)	-0.019(0.010) -0.050(0.037)	0.030 (0.010)	0.035(0.021) 0.107(0.032)	9.443
MLI DHS 2001	0.005 (0.007)	0.103(0.026)	-0.013 (0.031)		0.036 (0.031)	12,756
MLI DHS 2006	0.014(0.006)	0.031(0.021)	0.044(0.028)	0.000 (0.010)	0.031 (0.032)	14,743
MLI DHS 2012 MLI DHS 2015	$0.040 (0.007) \\ 0.013 (0.005)$	-0.063(0.021) 0.001(0.013)	-0.042 (0.024) 0.014 (0.018)	0.096(0.016)	0.150 (0.028) 0.030 (0.027)	10,442 18 184
MLI DHS 2018	0.029(0.007)	-0.054(0.020)	0.003 (0.023)	0.096(0.016)	0.146 (0.028)	10,431
MMR DHS 2015	0.005(0.006)	-0.028 (0.015)	-0.008 (0.010)	0.026(0.015)	0.042(0.029)	10,970
MNG DHS 2013	0.019(0.005)	-0.022(0.016)	0.001 (0.007)		0.029 (0.022)	12,991
MNG DHS 2018 MOZ DHS 1997	0.009(0.005) 0.014(0.009)	-0.034(0.016) 0.026(0.023)	$0.001 (0.008) \\ 0.033 (0.017)$		$0.065 (0.031) \\ 0.050 (0.072)$	11,543 8 998
MOZ DHS 2003	0.007 (0.007)	0.007 (0.019)	0.009(0.011)		0.038(0.031)	13,417
MRT DHS 2007	0.020(0.007)	-0.003 (0.019)	0.033(0.021)		0.088(0.039)	11,159
MRT DHS 2015	-0.018(0.007)	-0.000(0.017)	0.002 (0.018)		-0.072(0.038)	11,586
MWI DHS 1992 MWI DHS 2000	$0.013 (0.010) \\ 0.008 (0.007)$	$-0.011 (0.042) \\ 0.002 (0.021)$	-0.008(0.020)		0.059(0.048) 0.032(0.031)	4,003 13 723
MWI DHS 2004	0.019(0.007)	0.002(0.021) 0.024(0.022)	-0.033(0.012)		0.062 (0.029)	12,234
MWI DHS 2006	0.011(0.004)	-0.013 (0.014)	-0.003 (0.007)		0.037(0.022)	26,763
MWI DHS 2010	0.005 (0.005)	0.003 (0.014)	0.001 (0.008)	0.009 (0.011)	0.011 (0.021)	23,558
MWI DHS 2013 MWI DHS 2015	$0.007 (0.004) \\ 0.007 (0.005)$	-0.022(0.013) 0.001(0.013)	-0.003(0.007)	0.054 (0.012)	-0.002(0.023) 0.031(0.021)	24,831 25,285
MWI DHS 2019	-0.001 (0.005)	-0.031(0.012)	-0.003 (0.007)	0.004 (0.012)	-0.002(0.024)	23,785
NAM DHS 2000	-0.010 (0.008)	-0.014(0.017)	0.008(0.014)		$0.041 \ (0.066)$	7,279
NAM DHS 2006	0.007 (0.007)	-0.002 (0.014)	0.002(0.011)	0.070 (0.034)	0.076 (0.060)	9,268
NER DHS 1998	-0.003(0.007) 0.028(0.009)	-0.038(0.013)	-0.001(0.010) 0.035(0.043)	-0.001 (0.024)	-0.000 (0.048)	6.849
NER DHS 2006	0.029(0.008)	0.022 (0.025)	0.070(0.036)			8,306
NER DHS 2012	0.038(0.007)	$0.001 \ (0.025)$	$0.039\ (0.029)$	$0.089\ (0.016)$		10,242
NGA DHS 2003	0.002 (0.008) 0.012 (0.004)	0.029 (0.026)	0.023 (0.015)	0.027 (0.010)	0.086 (0.047) 0.020 (0.016)	8,407
NGA DHS 2008 NGA DHS 2013	0.013(0.004) 0.012(0.004)	0.013(0.013) 0.037(0.012)	0.012(0.000) 0.016(0.005)	$0.037 (0.010) \\ 0.009 (0.011)$	0.053(0.010) 0.052(0.020)	35,393 35,801
NGA DHS 2018	0.019(0.004)	0.007(0.012)	0.019(0.005)	0.116(0.010)	0.219(0.019)	41,909
NIC DHS 1998	-0.005 (0.007)	0.002(0.017)	-0.001 (0.014)	0.056 (0.015)	0.057(0.031)	14,975
NPL DHS 2006 NPL DHS 2011	-0.013(0.007) 0.023(0.007)	-0.043 (0.019) -0.025 (0.018)	-0.010(0.015) -0.007(0.011)	$-0.002 (0.012) \\ 0.020 (0.012)$	$0.015 (0.028) \\ 0.001 (0.028)$	9,306
NPL DHS 2016	0.005 (0.007)	-0.034(0.018)	0.006 (0.011)	0.029 (0.012) 0.029 (0.015)	0.062(0.031)	8,902
NPL DHS 2019	-0.014 (0.005)	-0.002 (0.014)	0.024 (0.009)		-0.015 (0.026)	$11,\!622$
PER DHS 1996	0.000 (0.006)	0.019(0.020)	-0.009(0.008)		0.108(0.033)	34,583
PHL DHS 2003 PNG DHS 2016	$0.003 (0.005) \\ 0.012 (0.005)$	-0.013(0.017) -0.025(0.013)	-0.014(0.007) 0.024(0.009)	0.027(0.014)	0.099(0.033)	15,521 18,927
RWA DHS 2000	0.012(0.008)	-0.040 (0.023)	0.029(0.017)	0.021 (0.01-)	0.096 (0.035)	9,513
RWA DHS 2005	0.022(0.007)	0.008(0.021)	0.019(0.016)	0.032(0.019)	0.064(0.029)	10,281
RWA DHS 2010	-0.000(0.006)	-0.022(0.018) 0.007(0.017)	-0.005(0.012)	-0.007 (0.016)	-0.032(0.023)	12,718
SEN DHS 2003	-0.008 (0.006)	0.021 (0.017)	0.020(0.021)	-0.010(0.017)	0.014 (0.036)	15,210
SEN DHS 2014	-0.001 (0.009)	0.001(0.019)	0.021 (0.029)	-0.013 (0.024)	0.093(0.057)	7,848
SEN DHS 2015	0.008(0.009)	0.022(0.019)	-0.020 (0.027)	0.037 (0.025)	0.078(0.048)	8,242
SEN DHS 2016 SLE DHS 2008	-0.002 (0.009) 0.022 (0.008)	0.025 (0.018) -0.053 (0.020)	0.050 (0.027) 0.020 (0.021)	-0.028 (0.022) 0.092 (0.019)	$0.007 (0.047) \\ 0.181 (0.041)$	7,995
SLE DHS 2003	0.022(0.008) 0.003(0.006)	0.026 (0.014)	0.020(0.021) 0.034(0.015)	0.032(0.013) 0.017(0.013)	0.001 (0.024)	15,874
SLE DHS 2017	-0.012 (0.005)	0.015(0.014)	0.009(0.014)		-0.029 (0.027)	15,041
SLE DHS 2019	0.017 (0.006)	0.004 (0.014)	0.025(0.013)	0.053 (0.014)	0.113(0.029)	15,832
SUR DHS 2018 TCA DHS 2019	$0.004 (0.007) \\ 0.006 (0.020)$	$0.014 (0.017) \\ 0.074 (0.087)$	-0.009(0.009) 0.024(0.017)		-0.032(0.047) 0.366(0.284)	7,967
TCD DHS 1996	0.002(0.009)	0.098(0.026)	0.024(0.011) 0.038(0.032)		0.074 (0.040)	7,398
TCD DHS 2004	0.013(0.010)	0.028(0.029)	0.048(0.033)		0.008(0.044)	6,125
TCD DHS 2019	0.002 (0.005)	0.029 (0.015)	0.020 (0.016)		0.019 (0.025) 0.147 (0.040)	19,619
TGO DHS 1998 TGO DHS 2010	0.028(0.008) 0.008(0.009)	$0.008 (0.021) \\ 0.000 (0.027)$	-0.012(0.018)		-0.048(0.040)	6,899 6,249
TGO DHS 2013	0.019(0.007)	0.011 (0.021)	0.022(0.013)	0.072(0.019)	0.016 (0.032)	9,916
THA DHS 2019	-0.001(0.004)	0.005(0.008)	$0.004 \ (0.005)$		0.052(0.040)	23,559
THA DHS 2022	0.000 (0.004)	-0.004 (0.009)	0.003 (0.005)	0.020 (0.019)	-0.038(0.041) 0.025(0.027)	19,874
TON DHS 2009	0.008(0.000) 0.008(0.013)	-0.030 (0.016)	-0.001(0.013)	0.029 (0.016)	-0.025(0.027)	2,909
TUN DHS 2018	-0.008 (0.007)	-0.015 (0.012)	-0.005 (0.009)		0.000 (0.037)	10,627
TUV DHS 2019	-0.026 (0.019)	-0.073(0.044)	0.002 (0.019)		-0.180 (0.100)	998
TZA DHS 1991 TZA DHS 1996	-0.003 (0.009)	$0.005 (0.022) \\ 0.049 (0.025)$	$0.014 (0.014) \\ 0.047 (0.033)$		0.020 (0.043) 0.038 (0.038)	9,643 8 088
TZA DHS 2004	0.000 (0.008)	0.008 (0.020)	-0.021 (0.012)		0.029 (0.039)	9,065

Table A7: Effect of man's questionnaire on the characteristics of eligible men

Table A7: Effect of man's questionnaire on the characteristics of eligible men

Survey	Age	Degrees of separation from household head	Years of schooling	Ever married	Number of biological children in household	Ν
TZA DHS 2010	0.002(0.008)	0.011 (0.021)	-0.006 (0.010)	0.005(0.021)	-0.024(0.037)	9 172
TZA DHS 2015	-0.005 (0.007)	-0.012(0.019)	-0.008 (0.009)	-0.024(0.018)	-0.016 (0.031)	11.995
TZA DHS 2022	0.005(0.006)	-0.021(0.016)	-0.007(0.009)	0.025 (0.017)	0.042(0.031)	13.351
UGA DHS 1995	0.012(0.009)	0.030(0.027)	0.028(0.015)	(·)	0.131(0.043)	6,997
UGA DHS 2000	0.015(0.009)	0.061(0.029)	0.012(0.015)		0.094(0.039)	7,074
UGA DHS 2006	0.015(0.008)	0.032(0.024)	-0.009 (0.013)	0.053(0.020)	0.039 (0.034)	8,257
UGA DHS 2011	0.013(0.008)	-0.001 (0.023)	0.001(0.013)	0.062(0.020)	0.070 (0.037)	8,742
UGA DHS 2016	0.008(0.005)	-0.004 (0.017)	0.027(0.009)	0.027(0.013)	0.035(0.024)	17,929
UKR DHS 2007	0.003(0.006)	0.005(0.014)	-0.001(0.005)		0.003 (0.040)	7,470
UZB DHS 2002	0.015(0.008)	-0.019(0.017)	-0.024(0.012)			4,981
VNM DHS 2020	-0.006 (0.005)	-0.000(0.012)	-0.002(0.008)		0.024(0.024)	11,009
WSM DHS 2019	-0.008(0.010)	-0.014(0.021)	0.004 (0.009)		0.023(0.052)	4,637
XKX DHS 2013	-0.009(0.008)	0.007 (0.016)	-0.006(0.006)		-0.011(0.037)	5,965
XKX DHS 2019	-0.001 (0.007)	-0.004(0.016)	0.002(0.006)		0.046(0.040)	6,452
ZAF DHS 2016	-0.012(0.007)	0.039(0.017)	-0.010(0.007)	-0.022(0.025)	-0.060(0.052)	10,142
ZMB DHS 1996	-0.022(0.009)	-0.018(0.022)	0.004 (0.013)	-0.002(0.021)	-0.016 (0.036)	8,401
ZMB DHS 2001	0.020 (0.008)	0.029(0.024)	0.018(0.011)		0.144(0.037)	8,019
ZWE DHS 1994	0.003 (0.009)	0.029(0.023)	-0.019(0.011)		0.033 (0.050)	5,993
ZWE DHS 1999	-0.012(0.009)	0.007 (0.023)	0.007 (0.010)		0.063(0.051)	6,173
ZWE DHS 2014	0.004 (0.006)	-0.013(0.015)	-0.011(0.005)		0.016(0.028)	13,762
ZWE DHS 2019	0.001 (0.007)	-0.040 (0.017)	0.003 (0.005)		-0.000 (0.032)	9,582

Notes: All regression coefficients are relative to the control mean. Standard errors are clustered at the household level and displayed in parentheses.

							N
		Degrees of	Years of	Ever	Children		1
Survey	Age	separation from	schooling	married	ever born	Survey	PHC
DEN DUG 0001	0.000 (0.004)	0.115 (0.000)	0.010 (0.000)	0.010 (0.000)		0.110	154 504
BEN DHS 2001 BEN DHS 2011	0.008 (0.004) 0.034 (0.002)	-0.115 (0.008) -0.092 (0.005)	0.040 (0.029)	0.010 (0.008) 0.055 (0.006)		$^{6,448}_{17,329}$	154,594
BEN MICS 2014	0.034(0.002) 0.043(0.003)	-0.052(0.003) -0.050(0.007)	-0.056(0.013)	0.053(0.000) 0.054(0.007)	0.182(0.011)	16,348	237.416
BFA MICS 2006	0.031(0.004)	0.015(0.011)	0.177(0.052)	0.006(0.010)	- ()	8,159	329,415
BOL DHS 1994	0.004(0.003)	-0.102 (0.007)	0.158(0.011)	0.069(0.009)		9,316	152,815
BOL DHS 2003	$0.005\ (0.003)$	-0.159(0.006)	0.024 (0.006)	0.116(0.007)		18,487	200,216
CMR DHS 2004	-0.004(0.003)	0.016 (0.007)	-0.067(0.009)	0.215(0.008)	0.119(0.012)	11,304	412,147
CBL MICS 2006	0.014(0.004) 0.002(0.006)	-0.050 (0.008) 0.018 (0.015)	-0.021 (0.011)	0.110(0.010) 0.154(0.018)		9,408 5 740	422,494 121 704
CUB MICS 2010	-0.011(0.005)	-0.025(0.013)	0.072(0.006)	0.134(0.010) 0.174(0.010)		9,440	276.307
CUB MICS 2014	0.011 (0.005)	-0.028 (0.011)	0.094(0.006)	0.124(0.011)		9,232	276,307
DOM MICS 2000	-0.015 (0.005)		0.015(0.011)	-0.027 (0.011)		4,784	235,841
GHA DHS 1998	0.015 (0.004)	-0.245(0.008)	0.145 (0.016)	0.057 (0.010)	0.043 (0.015)	4,970	449,300
GHA DHS 2008	0.012(0.003)	-0.152(0.006)	$0.004 \ (0.008)$	0.032(0.008)	0.146(0.018)	11,015	619,442
KEN DUS 1080	0.013(0.003) 0.041(0.005)	-0.046(0.004)		-0.005(0.006) 0.104(0.010)		7 424	0,014,102 026.014
KEN DHS 1989 KEN DHS 1998	0.041(0.003) 0.025(0.004)	-0.136(0.008)	0.125(0.009)	0.070(0.009)	0.049(0.012)	8.233	342.285
KEN DHS 2008	0.023(0.005)	-0.005 (0.010)	0.083(0.008)	0.043(0.011)	0.049(0.014)	8,767	934,904
KHM DHS 2000	0.020(0.003)	-0.047 (0.006)	0.037(0.011)	-0.006 (0.006)	0.034(0.009)	15,557	281,213
KHM DHS 2010	$0.024 \ (0.003)$	0.003 (0.006)	$0.080 \ (0.008)$	0.052 (0.007)	0.092(0.010)	19,237	358,486
KHM DHS 2014	0.017(0.003)	0.032(0.007)	0.009 (0.009)	0.125(0.009)	0.163(0.013)	18,012	34,975
KHM DHS 2021	0.027 (0.002) 0.010 (0.004)	-0.035(0.006)	0.023 (0.007) 0.005 (0.012)	0.093(0.006)	0.141(0.009)	19,845	409,977
LAO MICS 2000	0.019(0.004) 0.034(0.002)	-0.051(0.000)	-0.093(0.013) 0.020(0.007)	0.093(0.005)	0.186(0.007)	26 103	170 942
LBR DHS 2007	0.044 (0.002)	0.001 (0.000)	0.025(0.001) 0.025(0.021)	0.150(0.000)	0.277 (0.017)	7,448	85,341
LBR DHS 2009	0.029(0.006)	0.021(0.014)	· · · ·	· · · ·	0.341(0.021)	4,513	85,341
LSO DHS 2004	0.014(0.004)	-0.020 (0.009)	-0.056(0.006)	0.097(0.011)	0.151(0.016)	7,522	43,911
MEX MICS 2015	0.014(0.005)	-0.063(0.007)	0.007 (0.008)	0.089(0.012)	0.108(0.014)	12,937	2,989,055
MMR DHS 2015	0.027 (0.003)	-0.021 (0.007)	-0.023(0.007)	0.025(0.008)		13,454	1,341,553
MNG MICS 2010 MOZ DHS 1997	0.032(0.003) 0.017(0.006)	-0.111(0.007) 0.025(0.013)		0.102(0.009) 0.059(0.009)		9,599	12,114
MOZ MICS 2008	0.017 (0.000) 0.015 (0.003)	-0.012(0.006)		0.053(0.003) 0.062(0.005)		15,060	472.585
MOZ DHS 2009	0.026(0.006)	-0.040 (0.008)		0.074(0.006)		6,749	534,121
MWI DHS 1996	0.034(0.008)	-0.129 (0.011)	$0.250 \ (0.025)$	0.027(0.011)	0.147 (0.024)	2,737	237,593
MWI DHS 2000	$0.011 \ (0.003)$	-0.094 (0.006)	0.084(0.012)	$0.026 \ (0.005)$	$0.024 \ (0.009)$	13,538	237,593
MWI MICS 2006	-0.001(0.002)	-0.081(0.004)	-0.100(0.007)	0.075(0.004)	0.038 (0.007)	27,073	296,180
MWI DHS 2010 NEB DHS 2012	0.012 (0.002) 0.030 (0.004)	-0.044(0.005) 0.217(0.005)	0.049(0.007) 0.054(0.029)	$0.001 (0.004) \\ 0.083 (0.005)$		23,748	295,369
PER DHS 1991	-0.009(0.004)	-0.013(0.006)	0.052(0.005)	-0.003(0.003)	-0.031 (0.009)	17.351	570.535
PER DHS 2007	0.016 (0.002)	-0.073(0.004)	0.054(0.004)	0.005(0.005)	0.041 (0.007)	42,636	730,539
PER DHS 2009	0.015(0.002)	-0.091 (0.005)	-0.004 (0.004)	0.020(0.007)	0.004(0.008)	24,606	730,539
PRY DHS 1990	-0.004(0.004)	-0.008(0.010)	$0.028 \ (0.009)$	0.057 (0.011)	$0.052 \ (0.015)$	6,263	95,020
RWA DHS 1992	0.004(0.004)	0.001 (0.008)	0.011 (0.011)	0.011 (0.009)		6,947	157,610
RWA DHS 2000 BWA MICS 2000	0.019(0.003) 0.010(0.005)	0.026 (0.008)	0.011 (0.011) 0.035 (0.016)	0.079(0.008) 0.017(0.013)		10,622	203,410
SEN DHS 2012	-0.025(0.004)	0.056(0.010)	-0.082(0.025)	$0.017 (0.013) \\ 0.021 (0.011)$		9.043	205,855 287.052
SEN DHS 2014	-0.004 (0.005)	0.067 (0.012)	0.033(0.030)	0.030(0.012)		8,831	287,052
SEN DHS 2015	-0.013 (0.004)	0.049(0.010)	0.053(0.027)	0.038(0.011)		9,162	287,052
SLE DHS 2013	$0.042 \ (0.003)$	-0.003(0.007)	-0.055(0.015)	0.074(0.007)	0.200(0.011)	17,132	183,886
SLE DHS 2016	0.024(0.004)	-0.021 (0.009)	0 000 (0 01 -)	0.004 (0.040)	0.309(0.015)	8,526	183,886
TGO MICS 2010 TTO MICS 2011	0.019(0.004) 0.012(0.005)	-0.222(0.008)	0.006 (0.017) 0.020 (0.006)	-0.004 (0.010)	0.048(0.014)	7,016	143,932
TZA DHS 2003	0.012(0.003) 0.003(0.004)	-0.099 (0.009)	0.030(0.000) 0.069(0.010)	0.330(0.022) 0.044(0.008)	-0.033 (0.011)	4,424 7 154	29,094
TZA DHS 2004	0.000(0.004) 0.011(0.003)	-0.115(0.008)	0.026 (0.010)	0.044(0.000) 0.066(0.007)	-0.032(0.011)	10.611	894,768
TZA DHS 2010	-0.004 (0.004)	-0.110 (0.008)	-0.043 (0.008)	0.110(0.008)	-0.015 (0.011)	10,522	1,102,685
TZA DHS 2011	0.001 (0.004)	-0.089(0.008)	0.015 (0.009)	0.093(0.009)	-0.006 (0.010)	11,423	1,102,685
UGA DHS 2000	0.016(0.004)	-0.066 (0.008)	-0.009(0.012)	$0.085\ (0.008)$	0.046 (0.011)	7,734	540,836
UGA DHS 2014	-0.003(0.004)	-0.046 (0.010)	0.040 (0.000)	0.010 (0.005)	0.069 (0.014)	5,494	760,637
UGA DHS 2016 URY MICS 2012	0.011 (0.002) 0.023 (0.013)	-0.012(0.007)	0.049 (0.006)	0.010 (0.005)	0.030 (0.008)	3 103	78 649
VEN MICS 2002	0.004 (0.004)	-0.015 (0.010)	0.055(0.008)	-0.003 (0.012)		5,235	618,630
VNM MICS 2010	0.027(0.003)	-0.079 (0.005)	-0.119 (0.005)	0.083 (0.006)	0.099(0.009)	12,115	4,021,751
VNM MICS 2020	0.016 (0.003)	-0.122 (0.006)	0.014 (0.005)	0.096(0.006)	0.178(0.009)	11,294	2,077,336
ZAF DHS 2016	-0.007(0.003)	0.007 (0.009)	0.017 (0.004)	-0.147(0.014)		9,878	906,048
ZMB DHS 1992	-0.008(0.004)	-0.054 (0.008)	0.104(0.010)	0.100(0.008)	0.161 (0.013)	7,250	177,735
ZMB DHS 2001 ZWE DHS 2010	0.017 (0.003) 0.007 (0.003)	-0.038 (0.008)	0.093 (0.010)	0.045 (0.008) 0.019 (0.007)	$0.108 (0.012) \\ 0.027 (0.010)$	7,944 9.831	217,000
2L DIIO 2010	0.001 (0.000)	0.020 (0.000)	0.010 (0.004)	0.010 (0.001)	0.021 (0.010)	0,001	101,020

Notes: All regression coefficients are relative to the control mean. Standard errors are clustered at the household level and displayed in parentheses.

	Avg annual fertility change			
	(1)	(2)		
Census	-0.0140***	-0.0140***		
	(0.0014)	(0.0012)		
Constant	-0.0138***	-0.0138***		
	(0.0014)	(0.0012)		
Country FE	No	Yes		
Ν	22	22		
\mathbb{R}^2	0.1265	0.8849		

Table A9: Fertility transition in Sub-Saharan Africa in the 2000s

The dependent variable is the average annual decline in the number of children ever born by women aged 15 to 49. The omitted category is DHS. Standard errors are bootstrapped using 100 repetitions.

Table A10: Surveys with randomly assigned man's questionnaire excluded from analysis

Reason for exclusion	Excluded surveys	Total
Additional survey features	AGO DHS 2015; BEN DHS 2017;	28
administered in control households	CIV MICS 2016; CMR DHS 2004,	
(without man's questionnaire) that	2011, 2018; COD DHS 2013; COD	
were not implemented in treatment	MICS 2017; COG DHS 2011; COM	
households (with man's	MICS 2022; DOM DHS 2002; GIN	
questionnaire)	DHS 2012; JOR DHS 2017; KAZ	
	DHS 1999; KHM DHS 2005, 2021;	
	MDG DHS 2021; MDG MICS	
	2018; MOZ DHS 2011; MRT DHS	
	2019; NPL DHS 2022; RWA DHS	
	2014, 2019; SEN DHS 2018, 2018,	
	2019; TCD DHS 2014; TLS DHS	
	2016	
Eligibility for man's questionnaire	AFG DHS 2015; BGD DHS 1996,	13
conditional on marital status	1999, 2007, 2011; IDN DHS 2002,	
	2007, 2012, 2017; MDV DHS 2009;	
	NPL DHS 2001; PAK DHS 2012,	
	2017	
Randomization of man's	BLR MICS 2012, 2019; GUY	6
questionnaire stratified by presence	MICS 2014; MNE MICS 2013,	
of children at household listing	2018; UKR MICS 2012	
stage, but stratification variable		
not available in microdata		
No upper age limit for eligibility	BFA DHS 1993, MAR DHS 1992,	3
for man's questionnaire	SEN DHS 1992	
Individual identifiers do not match	STP MICS 2019; SWZ MICS 2014;	3
across microdata source files	TGO MICS 2017	
Random assignment of man's	GHA DHS 1993	1
questionnaire across clusters rather		
than across households within		
clusters		
Contradicting information about	KAZ MICS 2010	1
assignment of man's questionnaire		
in survey report and microdata		